ﻻ يوجد ملخص باللغة العربية
In previous works, we have demonstrated that the path integral for {it real, Lorentzian} four-geometries in Einstein gravity yields sensible results in well-understood physical situations, but leads to uncontrolled fluctuations when the no boundary condition proposed by Hartle and Hawking is imposed. In order to circumvent our result, new definitions for the gravitational path integral have been sought, involving specific choices for a class of {it complex} four-geometries to be included. In their latest proposal, Diaz Dorronsoro {it et al.}~cite{DiazDorronsoro:2018wro} advocate integrating the lapse over a complex circular contour enclosing the origin. In this note we show that, like their earlier proposal, this leads to mathematical and physical inconsistencies and thus cannot be regarded as a basis for quantum cosmology. We also comment on Vilenkin and Yamadas recent modification of the tunneling proposal, made in order to avoid the same problems. We show that it leads to the breakdown of perturbation theory in a strong coupling regime.
In recent work, we introduced Picard-Lefschetz theory as a tool for defining the Lorentzian path integral for quantum gravity in a systematic semiclassical expansion. This formulation avoids several pitfalls occurring in the Euclidean approach. Our m
We specify the semiclassical no-boundary wave function of the universe without relying on a functional integral of any kind. The wave function is given as a sum of specific saddle points of the dynamical theory that satisfy conditions of regularity o
We prove that the boundary of the future of a surface $K$ consists precisely of the points $p$ that lie on a null geodesic orthogonal to $K$ such that between $K$ and $p$ there are no points conjugate to $K$ nor intersections with another such geodes
We implement the no-boundary proposal for the wave function of the universe in an exactly solvable Bianchi IX minisuperspace model with two scale factors. We extend our earlier work (Phys. Rev. Lett. 121, 081302, 2018 / arXiv:1804.01102) to include t
A density-dependent conformal killing vector (CKV) field is attained from a conformally transformed action composed of a unique constraint and a Klein-Gordon field. The CKV is re-expressed into an information identity and studied in its integro-diffe