ترغب بنشر مسار تعليمي؟ اضغط هنا

Nonexponential decay of a giant artificial atom

67   0   0.0 ( 0 )
 نشر من قبل Gustav Andersson
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In quantum optics, light-matter interaction has conventionally been studied using small atoms interacting with electromagnetic fields with wavelength several orders of magnitude larger than the atomic dimensions. In contrast, here we experimentally demonstrate the vastly different giant atom regime, where an artificial atom interacts with acoustic fields with wavelength several orders of magnitude smaller than the atomic dimensions. This is achieved by coupling a superconducting qubit to surface acoustic waves at two points with separation on the order of 100 wavelengths. This approach is comparable to controlling the radiation of an atom by attaching it to an antenna. The slow velocity of sound leads to a significant internal time-delay for the field to propagate across the giant atom, giving rise to non-Markovian dynamics. We demonstrate the non-Markovian character of the giant atom in the frequency spectrum as well as nonexponential relaxation in the time domain.

قيم البحث

اقرأ أيضاً

An unstable quantum state generally decays following an exponential law, as environmental decoherence is expected to prevent the decay products from recombining to reconstruct the initial state. Here we show the existence of deviations from exponenti al decay in open quantum systems under very general conditions. Our results are illustrated with the exact dynamics under quantum Brownian motion and suggest an explanation of recent experimental observations.
We analyze the temporal behavior of the survival probability of an unstable $^6$Li Feshbach molecule close to the BCS-BEC crossover. We find different instances of nonexponential decay as the magnetic field approaches the resonance value, at which th e molecule becomes stable. We observe a transition from an exponential decay towards a regime dominated by a stretched-exponential law.
We present experimental observation of electromagnetically induced transparency (EIT) on a single macroscopic artificial atom (superconducting quantum system) coupled to open 1D space of a transmission line. Unlike in a optical media with many atoms, the single atom EIT in 1D space is revealed in suppression of reflection of electromagnetic waves, rather than absorption. The observed almost 100 % modulation of the reflection and transmission of propagating microwaves demonstrates full controllability of individual artificial atoms and a possibility to manipulate the atomic states. The system can be used as a switchable mirror of microwaves and opens a good perspective for its applications in photonic quantum information processing and other fields.
95 - R.Bianchetti 2010
A number of superconducting qubits, such as the transmon or the phase qubit, have an energy level structure with small anharmonicity. This allows for convenient access of higher excited states with similar frequencies. However, special care has to be taken to avoid unwanted higher-level populations when using short control pulses. Here we demonstrate the preparation of arbitrary three-level superposition states using optimal control techniques in a transmon. Performing dispersive read-out we extract the populations of all three levels of the qutrit and study the coherence of its excited states. Finally we demonstrate full quantum state tomography of the prepared qutrit states and evaluate the fidelities of a set of states, finding on average 96%.
Electron paramagnetic resonance (EPR) spectroscopy is an important technology in physics, chemistry, materials science, and biology. Sensitive detection with a small sample volume is a key objective in these areas, because it is crucial, for example, for the readout of a highly packed spin based quantum memory or the detection of unlabeled metalloproteins in a single cell. In conventional EPR spectrometers, the energy transfer from the spins to the cavity at a Purcell enhanced rate plays an essential role and requires the spins to be resonant with the cavity, however the size of the cavity (limited by the wavelength) makes it difficult to improve the spatial resolution. Here, we demonstrate a novel EPR spectrometer using a single artificial atom as a sensitive detector of spin magnetization. The artificial atom, a superconducting flux qubit, provides advantages both in terms of its quantum properties and its much stronger coupling with magnetic fields. We have achieved a sensitivity of $sim$400 spins/$sqrt{mathrm{Hz}}$ with a magnetic sensing volume around $10^{-14} lambda^3$ (50 femto-liters). This corresponds to an improvement of two-order of magnitude in the magnetic sensing volume compared with the best cavity based spectrometers while maintaining a similar sensitivity as those spectrometers . Our artificial atom is suitable for scaling down and thus paves the way for measuring single spins on the nanometer scale.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا