ترغب بنشر مسار تعليمي؟ اضغط هنا

Electromagnetically induced transparency on a single artificial atom

90   0   0.0 ( 0 )
 نشر من قبل Abdufarrukh Abdumalikov
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present experimental observation of electromagnetically induced transparency (EIT) on a single macroscopic artificial atom (superconducting quantum system) coupled to open 1D space of a transmission line. Unlike in a optical media with many atoms, the single atom EIT in 1D space is revealed in suppression of reflection of electromagnetic waves, rather than absorption. The observed almost 100 % modulation of the reflection and transmission of propagating microwaves demonstrates full controllability of individual artificial atoms and a possibility to manipulate the atomic states. The system can be used as a switchable mirror of microwaves and opens a good perspective for its applications in photonic quantum information processing and other fields.

قيم البحث

اقرأ أيضاً

A single superconducting artificial atom provides a unique basis for coupling electromagnetic fields and photons hardly achieved with a natural atom. Bringing a pair of harmonic oscillators into resonance with transitions of the three-level atom conv erts atomic spontaneous processes into correlated emission dynamics. We demonstrate two-mode correlated emission lasing on harmonic oscillators coupled via the fully controllable three-level artificial atom. Correlation of two different color emissions reveals itself as equally narrowed linewiths and quench of their mutual phase-diffusion. The mutual linewidth is more than four orders of magnitude narrower than the Schawlow-Townes limit. The interference between the different color lasing fields demonstrates the two-mode fields are strongly correlated.
Circuit quantum electrodynamics systems are typically built from resonators and two-level artificial atoms, but the use of multi-level artificial atoms instead can enable promising applications in quantum technology. Here we present an implementation of a Josephson junction circuit dedicated to operate as a V-shape artificial atom. Based on a concept of two internal degrees of freedom, the device consists of two transmon qubits coupled by an inductance. The Josephson nonlinearity introduces a strong diagonal coupling between the two degrees of freedom that finds applications in quantum non-demolition readout schemes, and in the realization of microwave cross-Kerr media based on superconducting circuits.
147 - Jing Tang , Yuangang Deng , 2021
We present an experimental proposal to achieve a strong photon blockade by employing electromagnetically induced transparency (EIT) with single alkaline-earth-metal atom trapped in an optical cavity. In the presence of optical Stark shift, both secon d-order correlation function and cavity transmission exhibit asymmetric structures between the red and blue sidebands of the cavity. For a weak control field, the photon quantum statistics for the coherent transparency window (i.e. atomic quasi-dark state resonance) are insensitive to the Stark shift, which should also be immune to the spontaneous emission of the excited state by taking advantage of the intrinsic dark-state polariton of EIT. Interestingly, by exploiting the interplay between Stark shift and control field, the strong photon blockade at atomic quasi-dark state resonance has an optimal second-order correlation function $g^{(2)}(0)sim10^{-4}$ and a high cavity transmission simultaneously. The underlying physical mechanism is ascribed to the Stark shift enhanced spectrum anharmonicity and the EIT hosted strong nonlinearity with loss-insensitive atomic quasi-dark state resonance, which is essentially different from the conventional proposal with emerging Kerr nonlinearity in cavity-EIT. Our results reveal a new strategy to realize high-quality single photon sources, which could open up a new avenue for engineering nonclassical quantum states in cavity quantum electrodynamics.
Electromagnetically induced transparency (EIT) is a promising technology for the enhancement of light-matter interactions, and recent demonstrations of the quantum EIT realized in artificial micro-structured medium have remarkably reduced the extreme requirement for experimental observation of EIT spectrum. In this paper, we propose to electrically control the EIT spectrum in a metamaterial for an electromagnetic modulator. A diode acting as a tunable resistor is loaded in the gap of two paired wires to inductively tune the magnetic resonance, which induces remarkable modulation on the EIT spectrum through the metamaterial sample. The experimental measurements confirmed that the prediction of electromagnetic modulation in three narrow bands on the EIT spectrum, and a modulation contrast of up to 31 dB was achieved on the transmission through the metamaterial. Our results may facilitate the study on active/dynamical technology in translational metamaterials, which connect extraordinary manipulations on the flow of light in metamaterials, e.g., the exotic EIT, and practical applications in industry.
147 - U. Vool , A. Kou , W. C. Smith 2017
Atomic systems display a rich variety of quantum dynamics due to the different possible symmetries obeyed by the atoms. These symmetries result in selection rules that have been essential for the quantum control of atomic systems. Superconducting art ificial atoms are mainly governed by parity symmetry. Its corresponding selection rule limits the types of quantum systems that can be built using electromagnetic circuits at their optimal coherence operation points (sweet spots). Here, we use third-order nonlinear coupling between the artificial atom and its readout resonator to drive transitions forbidden by the parity selection rule for linear coupling to microwave radiation. A Lambda-type system emerges from these newly accessible transitions, implemented here in the fluxonium artificial atom coupled to its antenna resonator. We demonstrate coherent manipulation of the fluxonium artificial atom at its sweet spot by stimulated Raman transitions. This type of transition enables the creation of new quantum operations, such as the control and readout of physically protected artificial atoms.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا