ﻻ يوجد ملخص باللغة العربية
An unstable quantum state generally decays following an exponential law, as environmental decoherence is expected to prevent the decay products from recombining to reconstruct the initial state. Here we show the existence of deviations from exponential decay in open quantum systems under very general conditions. Our results are illustrated with the exact dynamics under quantum Brownian motion and suggest an explanation of recent experimental observations.
Quantum technology is approaching a level of maturity, recently demonstrated in space-borne experiments and in-field measurements, which would allow for adoption by non-specialist users. Parallel advancements made in microprocessor-based electronics
In quantum optics, light-matter interaction has conventionally been studied using small atoms interacting with electromagnetic fields with wavelength several orders of magnitude larger than the atomic dimensions. In contrast, here we experimentally d
Decoherence induced by coupling a system with an environment may display universal features. Here we demostrate that when the coupling to the system drives a quantum phase transition in the environment, the temporal decay of quantum coherences in the
We investigate the dynamics of a quantum oscillator, whose evolution is monitored by a Bose-Einstein condensate (BEC) trapped in a symmetric double well potential. It is demonstrated that the oscillator may experience various degrees of decoherence d
We introduce protocols for designing and manipulating qubits with ultracold alkali atoms in 3D optical lattices. These qubits are formed from two-atom spin superposition states that create a decoherence-free subspace immune to stray magnetic fields,