ﻻ يوجد ملخص باللغة العربية
This paper considers a class of multi-channel random access algorithms, where contending devices may send multiple copies (replicas) of their messages to the central base station. We first develop a hypothetical algorithm that delivers a lower estimate for the access delay performance within this class. Further, we propose a feasible access control algorithm achieving low access delay by sending multiple message replicas, which approaches the performance of the hypothetical algorithm. The resulting performance is readily approximated by a simple lower bound, which is derived for a large number of channels.
In this paper, we study the problem of secret communication over a Compound Multiple Access Channel (MAC). In this channel, we assume that one of the transmitted messages is confidential that is only decoded by its corresponding receiver and kept sec
We study a two-user state-dependent generalized multiple-access channel (GMAC) with correlated states. It is assumed that each encoder has emph{noncausal} access to channel state information (CSI). We develop an achievable rate region by employing ra
In this paper we introduce the two-user asynchronous cognitive multiple access channel (ACMAC). This channel model includes two transmitters, an uninformed one, and an informed one which knows prior to the beginning of a transmission the message whic
Leveraging recent progress in physical-layer network coding we propose a new approach to random access: When packets collide, it is possible to recover a linear combination of the packets at the receiver. Over many rounds of transmission, the receive
In this paper, we study the problem of secret communication over a multiple-access channel with a common message. Here, we assume that two transmitters have confidential messages, which must be kept secret from the wiretapper (the second receiver), a