ﻻ يوجد ملخص باللغة العربية
We study a simple run-and-tumble random walk whose switching frequency from run mode to tumble mode and the reverse depend on a stochastic signal. We consider a particularly sharp, step-like dependence, where the run to tumble switching probability jumps from zero to one as the signal crosses a particular value (say y_1 ) from below. Similarly, tumble to run switching probability also shows a jump like this as the signal crosses another value (y_2 < y_1 ) from above. We are interested in characterizing the effect of signaling noise on the long time behavior of the random walker. We consider two different time-evolutions of the stochastic signal. In one case, the signal dynamics is an independent stochastic process and does not depend on the run-and-tumble motion. In this case we can analytically calculate the mean value and the complete distribution function of the run duration and tumble duration. In the second case, we assume that the signal dynamics is influenced by the spatial location of the random walker. For this system, we numerically measure the steady state position distribution of the random walker. We discuss some similarities and differences between our system and E.coli chemotaxis, which is another well-known run-and-tumble motion encountered in nature.
Run-and-tumble (RNT) motion is a prominent locomotion strategy employed by many living microorganisms. It is characterized by straight swimming intervals (runs), which are interrupted by sudden reorientation events (tumbles). In contrast, directional
Bacteria such as Escherichia coli move about in a series of runs and tumbles: while a run state (straight motion) entails all the flagellar motors spinning in counterclockwise mode, a tumble is caused by a shift in the state of one or more motors to
To estimate the time, many organisms, ranging from cyanobacteria to animals, employ a circadian clock which is based on a limit-cycle oscillator that can tick autonomously with a nearly 24h period. Yet, a limit-cycle oscillator is not essential for k
Complete understanding of the mechanisms regulating the proliferation and differentiation that takes place during human immune CD8+ T cell responses is still lacking. Human clinical data is usually limited to blood cell counts, yet the initiation of
We propose a model of run-and-tumble particles (RTPs) on a line with a fertile site at the origin. After going through the fertile site, a run-and-tumble particle gives rise to new particles until it flips direction. The process of creation of new pa