ﻻ يوجد ملخص باللغة العربية
Run-and-tumble (RNT) motion is a prominent locomotion strategy employed by many living microorganisms. It is characterized by straight swimming intervals (runs), which are interrupted by sudden reorientation events (tumbles). In contrast, directional changes of synthetic microswimmers (active particles, APs) are caused by rotational diffusion, which is superimposed with their translational motion and thus leads to rather continuous and slow particle reorientations. Here we demonstrate that active particles can also perform a swimming motion where translational and orientational changes are disentangled, similar to RNT. In our system, such motion is realized by a viscoelastic solvent and a periodic modulation of the self-propulsion velocity. Experimentally, this is achieved using light-activated Janus colloids, which are illuminated by a time-dependent laser field. We observe a strong enhancement of the effective translational and rotational motion when the modulation time is comparable to the relaxation time of the viscoelastic fluid. Our findings are explained by the relaxation of the elastic stress, which builds up during the self-propulsion, and is suddenly released when the activity is turned off. In addition to a better understanding of active motion in viscoelastic surroundings, our results may suggest novel steering strategies for synthetic microswimmers in complex environments.
We study a simple run-and-tumble random walk whose switching frequency from run mode to tumble mode and the reverse depend on a stochastic signal. We consider a particularly sharp, step-like dependence, where the run to tumble switching probability j
In this paper we develop a field-theoretic description for run and tumble chemotaxis, based on a density functional description of crystalline materials modified to capture orientational ordering. We show that this framework, with its in-built multi-
Active Brownian particles (ABPs) and Run-and-Tumble particles (RTPs) both self-propel at fixed speed $v$ along a body-axis ${bf u}$ that reorients either through slow angular diffusion (ABPs) or sudden complete randomisation (RTPs). We compare the ph
Motivated by the swimming of sperm in the non-Newtonian fluids of the female mammalian reproductive tract, we examine the swimming of filaments in the nonlinear viscoelastic Upper Convected Maxwell model. We obtain the swimming velocity and hydrodyna
We have directly observed short-time stress propagation in viscoelastic fluids using two optically trapped particles and a fast interferometric particle-tracking technique. We have done this both by recording correlations in the thermal motion of the