ﻻ يوجد ملخص باللغة العربية
Bacteria such as Escherichia coli move about in a series of runs and tumbles: while a run state (straight motion) entails all the flagellar motors spinning in counterclockwise mode, a tumble is caused by a shift in the state of one or more motors to clockwise spinning mode. In the presence of an attractant gradient in the environment, runs in the favourable direction are extended, and this results in a net drift of the organism in the direction of the gradient. The underlying signal transduction mechanism produces directed motion through a bi-lobed response function which relates the clockwise bias of the flagellar motor to temporal changes in the attractant concentration. The two lobes (positive and negative) of the response function are separated by a time interval of $sim 1$s, such that the bacterium effectively compares the concentration at two different positions in space and responds accordingly. We present here a novel path-integral method which allows us to address this problem in the most general way possible, including multi-step CW-CCW transitions, directional persistence and power-law waiting time distributions. The method allows us to calculate quantities such as the effective diffusion coefficient and drift velocity, in a power series expansion in the attractant gradient. Explicit results in the lowest order in the expansion are presented for specific models, which, wherever applicable, agree with the known results. New results for gamma-distributed run interval distributions are also presented.
Complex biological systems are very robust to genetic and environmental changes at all levels of organization. Many biological functions of Escherichia coli metabolism can be sustained against single-gene or even multiple-gene mutations by using redu
Cellular metabolism, the integrated interconversion of thousands of metabolic substrates through enzyme-catalyzed biochemical reactions, is the most investigated complex intercellular web of molecular interactions. While the topological organization
Two distinct mechanisms for filtering noise in an input signal are identified in a class of adaptive sensory networks. We find that the high frequency noise is filtered by the output degradation process through time-averaging; while the low frequency
In this paper we develop a field-theoretic description for run and tumble chemotaxis, based on a density functional description of crystalline materials modified to capture orientational ordering. We show that this framework, with its in-built multi-
Numerous biological approaches are available to characterise the mechanisms which govern the formation of human embryonic stem cell (hESC) colonies. To understand how the kinematics of single and pairs of hESCs impact colony formation, we study their