ﻻ يوجد ملخص باللغة العربية
In this paper, we consider using deep neural network for OFDM symbol detection and demonstrate its performance advantages in combating large Doppler Shift. In particular, a new architecture named Cascade-Net is proposed for detection, where deep neural network is cascading with a zero-forcing preprocessor to prevent the network stucking in a saddle point or a local minimum point. In addition, we propose a sliding detection approach in order to detect OFDM symbols with large number of subcarriers. We evaluate this new architecture, as well as the sliding algorithm, using the Rayleigh channel with large Doppler spread, which could degrade detection performance in an OFDM system and is especially severe for high frequency band and mmWave communications. The numerical results of OFDM detection in SISO scenario show that cascade-net can achieve better performance than zero-forcing method while providing robustness against ill conditioned channels. We also show the better performance of the sliding cascade network (SCN) compared to sliding zero-forcing detector through numerical simulation.
Modulation classification, an intermediate process between signal detection and demodulation in a physical layer, is now attracting more interest to the cognitive radio field, wherein the performance is powered by artificial intelligence algorithms.
Existing tag signal detection algorithms inevitably suffer from a high bit error rate (BER) due to the difficulties in estimating the channel state information (CSI). To eliminate the requirement of channel estimation and to improve the system perfor
As a green and secure wireless transmission way, secure spatial modulation (SM) is becoming a hot research area. Its basic idea is to exploit both the index of activated transmit antenna and amplitude phase modulation (APM) signal to carry messages,
We present a deep learning based joint source channel coding (JSCC) scheme for wireless image transmission over multipath fading channels with non-linear signal clipping. The proposed encoder and decoder use convolutional neural networks (CNN) and di
In this study, we propose a framework for chirp-based communications by exploiting discrete Fourier transform-spread orthogonal frequency division multiplexing (DFT-s-OFDM). We show that a well-designed frequency-domain spectral shaping (FDSS) filter