ﻻ يوجد ملخص باللغة العربية
In this study, we propose a framework for chirp-based communications by exploiting discrete Fourier transform-spread orthogonal frequency division multiplexing (DFT-s-OFDM). We show that a well-designed frequency-domain spectral shaping (FDSS) filter for DFT-s-OFDM can convert its single-carrier nature to a linear combination of chirps circularly translated in the time domain. Also, by exploiting the properties of the Fourier series and Bessel function of the first kind, we analytically obtain the FDSS filter for an arbitrary chirp. We theoretically show that the chirps with low ripples in the frequency domain result in a lower bit-error ratio (BER) via less noise enhancement. We also address the noise enhancement by exploiting the repetitions in the frequency. The proposed framework offers a new way to efficiently synthesize chirps that can be used in Internet-of-Things (IoT), dual-function radar and communication (DFRC) or wireless sensing applications with existing DFT-s-OFDM transceivers.
We present a deep learning based joint source channel coding (JSCC) scheme for wireless image transmission over multipath fading channels with non-linear signal clipping. The proposed encoder and decoder use convolutional neural networks (CNN) and di
In this study, we propose an approach to constructing on-off keying (OOK) symbols for wake-up radios (WURs) by using sequences in the frequency domain. The proposed method enables orthogonal multiplexing of wake-up signals (WUSs) and orthogonal frequ
A novel intercarrier interference (ICI)-aware orthogonal frequency division multiplexing (OFDM) channel estimation network ICINet is presented for rapidly time-varying channels. ICINet consists of two components: a preprocessing deep neural subnetwor
The fifth generation (5G) wireless standard will support several new use cases and 10 to 100 times the performance of fourth generation (4G) systems. Because of the diverse applications for 5G, flexible solutions which can address conflicting require
This paper considers device-free sensing in an orthogonal frequency division multiplexing (OFDM) cellular network to enable integrated sensing and communication (ISAC). A novel two-phase sensing framework is proposed to localize the passive targets t