ﻻ يوجد ملخص باللغة العربية
We consider the Dirichlet and Neumann problems for second-order linear elliptic equations: $$-triangle u +operatorname{div}(umathbf{b}) =f quadtext{ and }quad -triangle v -mathbf{b} cdot abla v =g$$ in a bounded Lipschitz domain $Omega$ in $mathbb{R}^n$ $(ngeq 3)$, where $mathbf{b}:Omega rightarrow mathbb{R}^n$ is a given vector field. Under the assumption that $mathbf{b} in L^{n}(Omega)^n$, we first establish existence and uniqueness of solutions in $L_{alpha}^{p}(Omega)$ for the Dirichlet and Neumann problems. Here $L_{alpha}^{p}(Omega)$ denotes the Sobolev space (or Bessel potential space) with the pair $(alpha,p)$ satisfying certain conditions. These results extend the classical works of Jerison-Kenig (1995, JFA) and Fabes-Mendez-Mitrea (1998, JFA) for the Poisson equation. We also prove existence and uniqueness of solutions of the Dirichlet problem with boundary data in $L^{2}(partialOmega)$.
We study the oblique derivative problem for uniformly elliptic equations on cone domains. Under the assumption of axi-symmetry of the solution, we find sufficient conditions on the angle of the oblique vector for Holder regularity of the gradient to
We consider the Dirichlet problem for a class of elliptic and parabolic equations in the upper-half space $mathbb{R}^d_+$, where the coefficients are the product of $x_d^alpha, alpha in (-infty, 1),$ and a bounded uniformly elliptic matrix of coeffic
In this paper we study existence and spectral properties for weak solutions of Neumann and Dirichlet problems associated to second order linear degenerate elliptic partial differential operators $X$, with rough coefficients of the form $$X=-text{div}
This paper is build around the stationary anisotropic Stokes and Navier-Stokes systems with an $L^infty$-tensor coefficient satisfying an ellipticity condition in terms of symmetric matrices in ${mathbb R}^{ntimes n}$ with zero matrix traces. We anal
In this note we establish existence and uniqueness of weak solutions of linear elliptic equation $text{div}[mathbf{A}(x) abla u] = text{div}{mathbf{F}(x)}$, where the matrix $mathbf{A}$ is just measurable and its skew-symmetric part can be unbounded