ﻻ يوجد ملخص باللغة العربية
In this note we establish existence and uniqueness of weak solutions of linear elliptic equation $text{div}[mathbf{A}(x) abla u] = text{div}{mathbf{F}(x)}$, where the matrix $mathbf{A}$ is just measurable and its skew-symmetric part can be unbounded. Global reverse H{o}lders regularity estimates for gradients of weak solutions are also obtained. Most importantly, we show, by providing an example, that boundedness and ellipticity of $mathbf{A}$ is not sufficient for higher integrability estimates even when the symmetric part of $mathbf{A}$ is the identity matrix. In addition, the example also shows the necessity of the dependence of $alpha$ in the H{o}lder $C^alpha$-regularity theory on the textup{BMO}-semi norm of the skew-symmetric part of $mathbf{A}$. The paper is an extension of classical results obtained by N. G. Meyers (1963) in which the skew-symmetric part of $mathbf{A}$ is assumed to be zero.
We study both divergence and non-divergence form parabolic and elliptic equations in the half space ${x_d>0}$ whose coefficients are the product of $x_d^alpha$ and uniformly nondegenerate bounded measurable matrix-valued functions, where $alpha in (-
In this paper, we study both elliptic and parabolic equations in non-divergence form with singular degenerate coefficients. Weighted and mixed-norm $L_p$-estimates and solvability are established under some suitable partially weighted BMO regularity
In this paper, we present counterexamples showing that for any $pin (1,infty)$, $p eq 2$, there is a non-divergence form uniformly elliptic operator with piecewise constant coefficients in $mathbb{R}^2$ (constant on each quadrant in $mathbb{R}^2$) fo
This paper continues the development of regularity results for quasilinear measure data problems begin{align*} begin{cases} -mathrm{div}(A(x, abla u)) &= mu quad text{in} Omega, quad quad qquad u &=0 quad text{on} partial Omega, end{cases} end{a
We consider the Dirichlet problem for a class of elliptic and parabolic equations in the upper-half space $mathbb{R}^d_+$, where the coefficients are the product of $x_d^alpha, alpha in (-infty, 1),$ and a bounded uniformly elliptic matrix of coeffic