ﻻ يوجد ملخص باللغة العربية
This paper is build around the stationary anisotropic Stokes and Navier-Stokes systems with an $L^infty$-tensor coefficient satisfying an ellipticity condition in terms of symmetric matrices in ${mathbb R}^{ntimes n}$ with zero matrix traces. We analyze, in $L^2$-based Sobolev spaces, the non-homogeneous boundary value problems of Dirichlet-transmission type for the anisotropic Stokes and Navier-Stokes systems in a compressible framework in a bounded Lipschitz domain with a Lipschitz interface in ${mathbb R}^n$, $nge 2$ ($n=2,3$ for the nonlinear problems). The transversal interface intersects the boundary of the Lipschitz domain. First, we use a mixed variational approach to prove well-posedness results for the linear anisotropic Stokes system. Then we show the existence of a weak solution for the nonlinear anisotropic Navier-Stokes system by implementing the Leray-Schauder fixed point theorem and using various results and estimates from the linear case, as well as the Leray-Hopf and some other norm inequalities. Explicit conditions for uniqueness of solutions to the nonlinear problems are also provided.
We study stationary Stokes systems in divergence form with piecewise Dini mean oscillation coefficients and data in a bounded domain containing a finite number of subdomains with $C^{1,rm{Dini}}$ boundaries. We prove that if $(u, p)$ is a weak soluti
In this paper we address the large-scale regularity theory for the stationary Navier-Stokes equations in highly oscillating bumpy John domains. These domains are very rough, possibly with fractals or cusps, at the microscopic scale, but are amenable
We study the stationary Stokes system with Dini mean oscillation coefficients in a domain having $C^{1,rm{Dini}}$ boundary. We prove that if $(u, p)$ is a weak solution of the system with zero Dirichlet boundary condition, then $(Du,p)$ is continuous
We consider the Dirichlet and Neumann problems for second-order linear elliptic equations: $$-triangle u +operatorname{div}(umathbf{b}) =f quadtext{ and }quad -triangle v -mathbf{b} cdot abla v =g$$ in a bounded Lipschitz domain $Omega$ in $mathbb{R
This paper is concerned with the asymptotic behavior of solutions of the two-dimensional Navier-Stokes equations with both non-autonomous deterministic and stochastic terms defined on unbounded domains. We first introduce a continuous cocycle for the