ﻻ يوجد ملخص باللغة العربية
A monolithic coupling between the material point method (MPM) and the finite element method (FEM) is presented. The MPM formulation described is implicit, and the exchange of information between particles and background grid is minimized. The reduced information transfer from the particles to the grid improves the stability of the method. Once the residual is assembled, the system matrix is obtained by means of automatic differentiation. In such a way, no explicit computation is required and the implementation is considerably simplified. When MPM is coupled with FEM, the MPM background grid is attached to the FEM body and the coupling is monolithic. With this strategy, no MPM particle can penetrate a FEM element, and the need for computationally expensive contact search algorithms used by existing coupling procedures is eliminated. The coupled system can be assembled with a single assembly procedure carried out element by element in a FEM fashion. Numerical results are reported to display the performances and advantages of the methods here discussed.
We present a multigrid scheme for the solution of finite-element Hartree-Fock equations for diatomic molecules. It is shown to be fast and accurate, the time effort depending linearly on the number of variables. Results are given for the molecules Li
This paper studies a model of two-phase flow with an immersed material viscous interface and a finite element method for numerical solution of the resulting system of PDEs. The interaction between the bulk and surface media is characterized by no-pen
Contact algorithm between different bodies plays an important role in solving collision problems. Usually it is not easy to be treated very well. Several ones for material point method were proposed by Bardenhangen, Brackbill, and Sulskycite{Barden
We present a finite-difference integration algorithm for solution of a system of differential equations containing a diffusion equation with nonlinear terms. The approach is based on Crank-Nicolson method with predictor-corrector algorithm and provid
Capturing the interaction between objects that have an extreme difference in Young s modulus or geometrical scale is a highly challenging topic for numerical simulation. One of the fundamental questions is how to build an accurate multi-scale method