ﻻ يوجد ملخص باللغة العربية
We present a finite-difference integration algorithm for solution of a system of differential equations containing a diffusion equation with nonlinear terms. The approach is based on Crank-Nicolson method with predictor-corrector algorithm and provides high stability and precision. Using a specific example of short-pulse laser interaction with semiconductors, we give a detailed description of the method and apply it for the solution of the corresponding system of differential equations, one of which is a nonlinear diffusion equation. The calculated dynamics of the energy density and the number density of photoexcited free carriers upon the absorption of laser energy are presented for the irradiated thin silicon film. The energy conservation within 0.2% has been achieved for the time step $10^4$ times larger than that in case of the explicit scheme, for the chosen numerical setup. We also present a few examples of successful application of the method demonstrating its benefits for the theoretical studies of laser-matter interaction problems.
A monolithic coupling between the material point method (MPM) and the finite element method (FEM) is presented. The MPM formulation described is implicit, and the exchange of information between particles and background grid is minimized. The reduced
A new implicit BGK collision model using a semi-Lagrangian approach is proposed in this paper. Unlike existing models, in which the implicit BGK collision is resolved either by a temporal extrapolation or by a variable transformation, the new model r
The explicit semi-Lagrangian method method for solution of Lagrangian transport equations as developed in [Natarajan and Jacobs, Computer and Fluids, 2020] is adopted for the solution of stochastic differential equations that is consistent with Disco
Magnetization dynamics in magnetic materials is modeled by the Landau-Lifshitz-Gilbert (LLG) equation. In the LLG equation, the length of magnetization is conserved and the system energy is dissipative. Implicit and semi-implicit schemes have been us
The recently developed energy conserving semi-implicit method (ECsim) for PIC simulation is applied to multiple scale problems where the electron-scale physics needs to be only partially retained and the interest is on the macroscopic or ion-scale pr