ﻻ يوجد ملخص باللغة العربية
Contact algorithm between different bodies plays an important role in solving collision problems. Usually it is not easy to be treated very well. Several ones for material point method were proposed by Bardenhangen, Brackbill, and Sulskycite{Bardenhagen2000,Bardenhagen2001}, Hu and Chencite{Hu_Chen2003}. An improved one for three-dimensional material point method is presented in this paper. The improved algorithm emphasizes the energy conservation of the system and faithfully recovers opposite acting forces between contacting bodies. Contrasted to the one by Bardenhagen, both the normal and tangential contacting forces are more appropriately applied to the contacting bodies via the contacting nodes of the background mesh; Contrasted to the one by Hu and Chen, not only the tangential velocities but also the normal ones are handled separately in respective individual mesh. This treatment ensures not only the contact/sliding/separation procedure but also the friction between contacting bodies are recovered. The presented contact algorithm is validated via numerical experiments including rolling simulation, impact of elastic spheres, impact of a Taylor bar and impact of plastic spheres. The numerical results show that the multi-mesh material point method with the improved contact algorithm is more suitable for solving collision problems.
Density functional theory calculations use a significant fraction of current supercomputing time. The resources required scale with the problem size, internal workings of the code and the number of iterations to convergence, the latter being controll
A monolithic coupling between the material point method (MPM) and the finite element method (FEM) is presented. The MPM formulation described is implicit, and the exchange of information between particles and background grid is minimized. The reduced
The goal of Point Distance Solving Problems is to find 2D or 3D placements of points knowing distances between some pairs of points. The common guideline is to solve them by a numerical iterative method (emph{e.g.} Newton-Raphson method). A sole solu
We developed a fast numerical algorithm for solving the three dimensional vectorial Helmholtz equation that arises in electromagnetic scattering problems. The algorithm is based on electric field integral equations and is essentially a boundary eleme
The universal tendency in scanning probe microscopy (SPM) over the last two decades is to transition from simple 2D imaging to complex detection and spectroscopic imaging modes. The emergence of complex SPM engines brings forth the challenge of relia