ﻻ يوجد ملخص باللغة العربية
We study the adiabatic response of open systems governed by Lindblad evolutions. In such systems, there is an ambiguity in the assignment of observables to fluxes (rates) such as velocities and currents. For the appropriate notion of flux, the formulas for the transport coefficients are simple and explicit and are governed by the parallel transport on the manifold of instantaneous stationary states. Among our results we show that the response coefficients of open systems, whose stationary states are projections, is given by the adiabatic curvature.
The first proof of the quantum adiabatic theorem was given as early as 1928. Today, this theorem is increasingly applied in a many-body context, e.g. in quantum annealing and in studies of topological properties of matter. In this setup, the rate of
We relate explicitly the adiabatic curvature -- in flux space -- of an interacting Hall insulator with nondegenerate ground state to various linear response coefficients, in particular the Kubo response and the adiabatic response. The flexibility of
In these lecture notes, we review the adiabatic theorem in quantum mechanics, focusing on a recent extension to many-body systems. The role of locality is emphasized and the relation to the quasi-adiabatic flow discussed. An important application of
We study the exponential convergence to the stationary state for nonequilibrium Langevin dynamics, by a perturbative approach based on hypocoercive techniques developed for equilibrium Langevin dynamics. The Hamiltonian and overdamped limits (corresp
We study driven finite quantum systems in contact with a thermal reservoir in the regime in which the system changes slowly in comparison to the equilibration time. The associated isothermal adiabatic theorem allows us to control the full statistics