ﻻ يوجد ملخص باللغة العربية
Let $D(G)$ and $D^Q(G)= Diag(Tr) + D(G)$ be the distance matrix and distance signless Laplacian matrix of a simple strongly connected digraph $G$, respectively, where $Diag(Tr)=textrm{diag}(D_1,D_2,$ $ldots,D_n)$ be the diagonal matrix with vertex transmissions of the digraph $G$. To track the gradual change of $D(G)$ into $D^Q(G)$, in this paper, we propose to study the convex combinations of $D(G)$ and $Diag(Tr)$ defined by $$D_alpha(G)=alpha Diag(Tr)+(1-alpha)D(G), 0leq alphaleq1.$$ This study reduces to merging the distance spectral and distance signless Laplacian spectral theories. The eigenvalue with the largest modulus of $D_alpha(G)$ is called the $D_alpha$ spectral radius of $G$, denoted by $mu_alpha(G)$. We determine the digraph which attains the maximum (or minimum) $D_alpha$ spectral radius among all strongly connected digraphs. Moreover, we also determine the digraphs which attain the minimum $D_alpha$ spectral radius among all strongly connected digraphs with given parameters such as dichromatic number, vertex connectivity or arc connectivity.
Given a graph $G$, the exponential distance matrix is defined entry-wise by letting the $(u,v)$-entry be $q^{text{dist}(u,v)}$, where $text{dist}(u,v)$ is the distance between the vertices $u$ and $v$ with the convention that if vertices are in diffe
Let $G$ be a simple, connected graph, $mathcal{D}(G)$ be the distance matrix of $G$, and $Tr(G)$ be the diagonal matrix of vertex transmissions of $G$. The distance Laplacian matrix and distance signless Laplacian matrix of $G$ are defined by $mathca
For a connected graph $G:=(V,E)$, the Steiner distance $d_G(X)$ among a set of vertices $X$ is the minimum size among all the connected subgraphs of $G$ whose vertex set contains $X$. The $k-$Steiner distance matrix $D_k(G)$ of $G$ is a matrix whose
We propose a quantum walk defined by digraphs (mixed graphs). This is like Grover walk that is perturbed by a certain complex-valued function defined by digraphs. The discriminant of this quantum walk is a matrix that is a certain normalization of ge
We prove a conjecture of Fox, Huang, and Lee that characterizes directed graphs that have constant density in all tournaments: they are disjoint unions of trees that are each constructed in a certain recursive way.