ﻻ يوجد ملخص باللغة العربية
Let $G$ be a simple, connected graph, $mathcal{D}(G)$ be the distance matrix of $G$, and $Tr(G)$ be the diagonal matrix of vertex transmissions of $G$. The distance Laplacian matrix and distance signless Laplacian matrix of $G$ are defined by $mathcal{L}(G) = Tr(G)-mathcal{D}(G)$ and $mathcal{Q}(G) = Tr(G)+mathcal{D}(G)$, respectively. The eigenvalues of $mathcal{D}(G)$, $mathcal{L}(G)$ and $mathcal{Q}(G)$ is called the $mathcal{D}-$spectrum, $mathcal{L}-$spectrum and $mathcal{Q}-$spectrum, respectively. The generalized distance matrix of $G$ is defined as $mathcal{D}_{alpha}(G)=alpha Tr(G)+(1-alpha)mathcal{D}(G),~0leqalphaleq1$, and the generalized distance spectral radius of $G$ is the largest eigenvalue of $mathcal{D}_{alpha}(G)$. In this paper, we give a complete description of the $mathcal{D}-$spectrum, $mathcal{L}-$spectrum and $mathcal{Q}-$spectrum of some graphs obtained by operations. In addition, we present some new upper and lower bounds on the generalized distance spectral radius of $G$ and of its line graph $L(G)$, based on other graph-theoretic parameters, and characterize the extremal graphs. Finally, we study the generalized distance spectrum of some composite graphs.
For a connected graph $G:=(V,E)$, the Steiner distance $d_G(X)$ among a set of vertices $X$ is the minimum size among all the connected subgraphs of $G$ whose vertex set contains $X$. The $k-$Steiner distance matrix $D_k(G)$ of $G$ is a matrix whose
For a simple, undirected and connected graph $G$, $D_{alpha}(G) = alpha Tr(G) + (1-alpha) D(G)$ is called the $alpha$-distance matrix of $G$, where $alphain [0,1]$, $D(G)$ is the distance matrix of $G$, and $Tr(G)$ is the vertex transmission diagonal
For a connected graph $G$ on $n$ vertices, recall that the distance signless Laplacian matrix of $G$ is defined to be $mathcal{Q}(G)=Tr(G)+mathcal{D}(G)$, where $mathcal{D}(G)$ is the distance matrix, $Tr(G)=diag(D_1, D_2, ldots, D_n)$ and $D_{i}$ is
Let $D(G)$ and $D^Q(G)= Diag(Tr) + D(G)$ be the distance matrix and distance signless Laplacian matrix of a simple strongly connected digraph $G$, respectively, where $Diag(Tr)=textrm{diag}(D_1,D_2,$ $ldots,D_n)$ be the diagonal matrix with vertex tr
Given a graph $G$, the exponential distance matrix is defined entry-wise by letting the $(u,v)$-entry be $q^{text{dist}(u,v)}$, where $text{dist}(u,v)$ is the distance between the vertices $u$ and $v$ with the convention that if vertices are in diffe