ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum walks defined by digraphs and generalized Hermitian adjacency matrices

65   0   0.0 ( 0 )
 نشر من قبل Sho Kubota
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose a quantum walk defined by digraphs (mixed graphs). This is like Grover walk that is perturbed by a certain complex-valued function defined by digraphs. The discriminant of this quantum walk is a matrix that is a certain normalization of generalized Hermitian adjacency matrices. Furthermore, we give definitions of the positive and negative supports of the transfer matrix, and clarify explicit formulas of their supports of the square. In addition, we give tables by computer on the identification of digraphs by their eigenvalues.



قيم البحث

اقرأ أيضاً

In this paper, we determine periodicity of quantum walks defined by mixed paths and mixed cycles. By the spectral mapping theorem of quantum walks, consideration of periodicity is reduced to eigenvalue analysis of $eta$-Hermitian adjacency matrices. First, we investigate coefficients of the characteristic polynomials of $eta$-Hermitian adjacency matrices. We show that the characteristic polynomials of mixed trees and their underlying graphs are same. We also define $n+1$ types of mixed cycles and show that every mixed cycle is switching equivalent to one of them. We use these results to discuss periodicity. We show that the mixed paths are periodic for any $eta$. In addition, we provide a necessary and sufficient condition for a mixed cycle to be periodic and determine their periods.
423 - M. Abreu , M. Funk , D. Labbate 2010
In 1960, Hoffman and Singleton cite{HS60} solved a celebrated equation for square matrices of order $n$, which can be written as $$ (kappa - 1) I_n + J_n - A A^{rm T} = A$$ where $I_n$, $J_n$, and $A$ are the identity matrix, the all one matrix, and a $(0,1)$--matrix with all row and column sums equal to $kappa$, respectively. If $A$ is an incidence matrix of some configuration $cal C$ of type $n_kappa$, then the left-hand side $Theta(A):= (kappa - 1)I_n + J_n - A A^{rm T}$ is an adjacency matrix of the non--collinearity graph $Gamma$ of $cal C$. In certain situations, $Theta(A)$ is also an incidence matrix of some $n_kappa$ configuration, namely the neighbourhood geometry of $Gamma$ introduced by Lef`evre-Percsy, Percsy, and Leemans cite{LPPL}. The matrix operator $Theta$ can be reiterated and we pose the problem of solving the generalised Hoffman--Singleton equation $Theta^m(A)=A$. In particular, we classify all $(0,1)$--matrices $M$ with all row and column sums equal to $kappa$, for $kappa = 3,4$, which are solutions of this equation. As a by--product, we obtain characterisations for incidence matrices of the configuration $10_3F$ in Kantors list cite{Kantor} and the $17_4$ configuration $#1971$ in Betten and Bettens list cite{BB99}.
The cutoff phenomenon was recently confirmed for random walks on Ramanujan graphs by the first author and Peres. In this work, we obtain analogs in higher dimensions, for random walk operators on any Ramanujan complex associated with a simple group $ G$ over a local field $F$. We show that if $T$ is any $k$-regular $G$-equivariant operator on the Bruhat-Tits building with a simple combinatorial property (collision-free), the associated random walk on the $n$-vertex Ramanujan complex has cutoff at time $log_k n$. The high dimensional case, unlike that of graphs, requires tools from non-commutative harmonic analysis and the infinite-dimensional representation theory of $G$. Via these, we show that operators $T$ as above on Ramanujan complexes give rise to Ramanujan digraphs with a special property ($r$-normal), implying cutoff. Applications include geodesic flow operators, geometric implications, and a confirmation of the Riemann Hypothesis for the associated zeta functions over every group $G$, previously known for groups of type $widetilde A_n$ and $widetilde C_2$.
We define strongly chordal digraphs, which generalize strongly chordal graphs and chordal bipartite graphs, and are included in the class of chordal digraphs. They correspond to square 0,1 matrices that admit a simultaneous row and column permutation avoiding the {Gamma} matrix. In general, it is not clear if these digraphs can be recognized in polynomial time, and we focus on symmetric digraphs (i.e., graphs with possible loops), tournaments with possible loops, and balanced digraphs. In each of these cases we give a polynomial-time recognition algorithm and a forbidden induced subgraph characterization. We also discuss an algorithm for minimum general dominating set in strongly chordal graphs with possible loops, extending and unifying similar algorithms for strongly chordal graphs and chordal bipartite graphs.
57 - Hisashi Morioka 2018
We study the spectral analysis and the scattering theory for time evolution operators of position-dependent quantum walks. Our main purpose of this paper is construction of generalized eigenfunctions of the time evolution operator. Roughly speaking, the generalized eigenfunctions are not square summable but belong to $ell^{infty}$-space on ${bf Z}$. Moreover, we derive a characterization of the set of generalized eigenfunctions in view of the time-harmonic scattering theory. Thus we show that the S-matrix associated with the quantum walk appears in the singularity expansion of generalized eigenfunctions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا