ﻻ يوجد ملخص باللغة العربية
We develop theory for using heuristics to solve computationally hard problems in differential privacy. Heuristic approaches have enjoyed tremendous success in machine learning, for which performance can be empirically evaluated. However, privacy guarantees cannot be evaluated empirically, and must be proven --- without making heuristic assumptions. We show that learning problems over broad classes of functions can be solved privately and efficiently, assuming the existence of a non-private oracle for solving the same problem. Our first algorithm yields a privacy guarantee that is contingent on the correctness of the oracle. We then give a reduction which applies to a class of heuristics which we call certifiable, which allows us to convert oracle-dependent privacy guarantees to worst-case privacy guarantee that hold even when the heuristic standing in for the oracle might fail in adversarial ways. Finally, we consider a broad class of functions that includes most classes of simple boolean functions studied in the PAC learning literature, including conjunctions, disjunctions, parities, and discrete halfspaces. We show that there is an efficient algorithm for privately constructing synthetic data for any such class, given a non-private learning oracle. This in particular gives the first oracle-efficient algorithm for privately generating synthetic data for contingency tables. The most intriguing question left open by our work is whether or not every problem that can be solved differentially privately can be privately solved with an oracle-efficient algorithm. While we do not resolve this, we give a barrier result that suggests that any generic oracle-efficient reduction must fall outside of a natural class of algorithms (which includes the algorithms given in this paper).
Sensitive statistics are often collected across sets of users, with repeated collection of reports done over time. For example, trends in users private preferences or software usage may be monitored via such reports. We study the collection of such s
Traditional differential privacy is independent of the data distribution. However, this is not well-matched with the modern machine learning context, where models are trained on specific data. As a result, achieving meaningful privacy guarantees in M
Motivated by the increasing concern about privacy in nowadays data-intensive online learning systems, we consider a black-box optimization in the nonparametric Gaussian process setting with local differential privacy (LDP) guarantee. Specifically, th
This paper investigates capabilities of Privacy-Preserving Deep Learning (PPDL) mechanisms against various forms of privacy attacks. First, we propose to quantitatively measure the trade-off between model accuracy and privacy losses incurred by recon
Many commonly used learning algorithms work by iteratively updating an intermediate solution using one or a few data points in each iteration. Analysis of differential privacy for such algorithms often involves ensuring privacy of each step and then