ترغب بنشر مسار تعليمي؟ اضغط هنا

On the cofactor conditions and further conditions of supercompatibility between phases

53   0   0.0 ( 0 )
 نشر من قبل Francesco Della Porta
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper we improve the understanding of the cofactor conditions, which are particular conditions of geometric compatibility between austenite and martensite, that are believed to influence reversibility of martensitic transformations. We also introduce a physically motivated metric to measure how closely a material satisfies the cofactor conditions, as the two currently used in the literature can give contradictory results. We introduce a new condition of super-compatibility between martensitic laminates, which potentially reduces hysteresis and enhances reversibility. Finally, we show that this new condition of super-compatibility is very closely satisfied by Zn45Au30Cu25, the first of a class of recently discovered materials, fabricated to closely satisfy the cofactor conditions, and undergoing ultra-reversible martensitic transformation.



قيم البحث

اقرأ أيضاً

We present a simple one-dimensional Ising-type spin system on which we define a completely asymmetric Markovian single spin-flip dynamics. We study the system at a very low, yet non-zero, temperature and we show that for empty boundary conditions the Gibbs measure is stationary for such dynamics, while introducing in a single site a $+$ condition the stationary measure changes drastically, with macroscopical effects. We achieve this result defining an absolutely convergent series expansion of the stationary measure around the zero temperature system. Interesting combinatorial identities are involved in the proofs.
We derive general conditions of slip of a fluid on the boundary. Under these conditions the velocity of the fluid on the immovable boundary is a function of the normal and tangential components of the force acting on the surface of the fluid. A probl em on stationary flow of an electrorheological fluid in which the terms of slip are specified on one part of the boundary and surface forces are given on the other is formulated and studied. Existence of a solution of this problem is proved by using the methods of penalty functions, monotonicity and compactness. It is shown that the method of penalty functions and the Galerkin approximations can be used for the approximate solution of the problem under consideration.
We consider the dynamics of a quantum particle of mass $m$ on a $n$-edges star-graph with Hamiltonian $H_K=-(2m)^{-1}hbar^2 Delta$ and Kirchhoff conditions in the vertex. We describe the semiclassical limit of the quantum evolution of an initial stat e supported on one of the edges and close to a Gaussian coherent state. We define the limiting classical dynamics through a Liouville operator on the graph, obtained by means of Kreu{i}ns theory of singular perturbations of self-adjoint operators. For the same class of initial states, we study the semiclassical limit of the wave and scattering operators for the couple $(H_K,H_{D}^{oplus})$, where $H_{D}^{oplus}$ is the free Hamiltonian with Dirichlet conditions in the vertex.
We set up and study a coupled problem on stationary non-isothermal flow of electrorheological fluids. The problem consist in finding functions of velocity, pressure and temperature which satisfy the motion equations, the condition of incompressibilit y, the equation of the balance of thermal energy and boundary conditions. We introduce the notions of a $P$-generalized solution and generalized solution of the coupled problem. In case of the $P$-generalized solution the dissipation of energy is defined by the regularized velocity field, which leads to a nonlocal model. Under weak conditions, we prove the existence of the $P$ -generalized solution of the coupled problem. The existence of the generalized solution is proved under the conditions on smoothness of the boundary and on smallness of the data of the problem
We give examples of infinite order rational transformations that leave linear differential equations covariant. These examples are non-trivial yet simple enough illustrations of exact representations of the renormalization group. We first illustrate covariance properties on order-two linear differential operators associated with identities relating the same $_2F_1$ hypergeometric function with different rational pullbacks. We provide two new and more general results of the previous covariance by rational functions: a new Heun function example and a higher genus $_2F_1$ hypergeometric function example. We then focus on identities relating the same hypergeometric function with two different algebraic pullback transformations: such remarkable identities correspond to modular forms, the algebraic transformations being solution of another differentially algebraic Schwarzian equation that emerged in a paper by Casale. Further, we show that the first differentially algebraic equation can be seen as a subcase of the last Schwarzian differential condition, the restriction corresponding to a factorization condition of some associated order-two linear differential operator. Finally, we also explore generalizations of these results, for instance, to $_3F_2$, hypergeometric functions, and show that one just reduces to the previous $_2F_1$ cases through a Clausen identity. In a $_2F_1$ hypergeometric framework the Schwarzian condition encapsulates all the modular forms and modular equations of the theory of elliptic curves, but these two conditions are actually richer than elliptic curves or $_2F_1$ hypergeometric functions, as can be seen on the Heun and higher genus example. This work is a strong incentive to develop more differentially algebraic symmetry analysis in physics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا