ﻻ يوجد ملخص باللغة العربية
We give examples of infinite order rational transformations that leave linear differential equations covariant. These examples are non-trivial yet simple enough illustrations of exact representations of the renormalization group. We first illustrate covariance properties on order-two linear differential operators associated with identities relating the same $_2F_1$ hypergeometric function with different rational pullbacks. We provide two new and more general results of the previous covariance by rational functions: a new Heun function example and a higher genus $_2F_1$ hypergeometric function example. We then focus on identities relating the same hypergeometric function with two different algebraic pullback transformations: such remarkable identities correspond to modular forms, the algebraic transformations being solution of another differentially algebraic Schwarzian equation that emerged in a paper by Casale. Further, we show that the first differentially algebraic equation can be seen as a subcase of the last Schwarzian differential condition, the restriction corresponding to a factorization condition of some associated order-two linear differential operator. Finally, we also explore generalizations of these results, for instance, to $_3F_2$, hypergeometric functions, and show that one just reduces to the previous $_2F_1$ cases through a Clausen identity. In a $_2F_1$ hypergeometric framework the Schwarzian condition encapsulates all the modular forms and modular equations of the theory of elliptic curves, but these two conditions are actually richer than elliptic curves or $_2F_1$ hypergeometric functions, as can be seen on the Heun and higher genus example. This work is a strong incentive to develop more differentially algebraic symmetry analysis in physics.
We give the exact expressions of the partial susceptibilities $chi^{(3)}_d$ and $chi^{(4)}_d$ for the diagonal susceptibility of the Ising model in terms of modular forms and Calabi-Yau ODEs, and more specifically, $_3F_2([1/3,2/3,3/2],, [1,1];, z)
Invariance properties of classes in the variational sequence suggested to Krupka et al. the idea that there should exist a close correspondence between the notions of variationality of a differential form and invariance of its exterior derivative. It
We show that almost all the linear differential operators factors obtained in the analysis of the n-particle contribution of the susceptibility of the Ising model for $, n le 6$, are operators associated with elliptic curves. Beyond the simplest fact
We show that non-linear Schwarzian differential equations emerging from covariance symmetry conditions imposed on linear differential operators with hypergeometric function solutions, can be generalized to arbitrary order linear differential operator
We give an example of infinite order rational transformation that leaves a linear differential equation covariant. This example can be seen as a non-trivial but still simple illustration of an exact representation of the renormalization group.