ﻻ يوجد ملخص باللغة العربية
We set up and study a coupled problem on stationary non-isothermal flow of electrorheological fluids. The problem consist in finding functions of velocity, pressure and temperature which satisfy the motion equations, the condition of incompressibility, the equation of the balance of thermal energy and boundary conditions. We introduce the notions of a $P$-generalized solution and generalized solution of the coupled problem. In case of the $P$-generalized solution the dissipation of energy is defined by the regularized velocity field, which leads to a nonlocal model. Under weak conditions, we prove the existence of the $P$ -generalized solution of the coupled problem. The existence of the generalized solution is proved under the conditions on smoothness of the boundary and on smallness of the data of the problem
We derive general conditions of slip of a fluid on the boundary. Under these conditions the velocity of the fluid on the immovable boundary is a function of the normal and tangential components of the force acting on the surface of the fluid. A probl
We develop a model of an electrorheological fluid such that the fluid is considered as an anisotropic one with the viscosity depending on the second invariant of the rate of strain tensor, on the module of the vector of electric field strength, and o
We review proofs of a theorem of Bloch on the absence of macroscopic stationary currents in quantum systems. The standard proof shows that the current in 1D vanishes in the large volume limit under rather general conditions. In higher dimension, the
In this paper we improve the understanding of the cofactor conditions, which are particular conditions of geometric compatibility between austenite and martensite, that are believed to influence reversibility of martensitic transformations. We also i
We make use of the Maupertuis -- Jacobi correspondence, well known in Classical Mechanics, to simplify 2-D asymptotic formulas based on Maslovs canonical operator, when constructing Lagrangian manifolds invariant with respect to phase flows for Hamil