ترغب بنشر مسار تعليمي؟ اضغط هنا

Coupled problems on stationary flow of electrorheological fluids under the conditions of nonhomogeneous temperature distribution

149   0   0.0 ( 0 )
 نشر من قبل William G. Litvinov
 تاريخ النشر 2003
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We set up and study a coupled problem on stationary non-isothermal flow of electrorheological fluids. The problem consist in finding functions of velocity, pressure and temperature which satisfy the motion equations, the condition of incompressibility, the equation of the balance of thermal energy and boundary conditions. We introduce the notions of a $P$-generalized solution and generalized solution of the coupled problem. In case of the $P$-generalized solution the dissipation of energy is defined by the regularized velocity field, which leads to a nonlocal model. Under weak conditions, we prove the existence of the $P$ -generalized solution of the coupled problem. The existence of the generalized solution is proved under the conditions on smoothness of the boundary and on smallness of the data of the problem



قيم البحث

اقرأ أيضاً

We derive general conditions of slip of a fluid on the boundary. Under these conditions the velocity of the fluid on the immovable boundary is a function of the normal and tangential components of the force acting on the surface of the fluid. A probl em on stationary flow of an electrorheological fluid in which the terms of slip are specified on one part of the boundary and surface forces are given on the other is formulated and studied. Existence of a solution of this problem is proved by using the methods of penalty functions, monotonicity and compactness. It is shown that the method of penalty functions and the Galerkin approximations can be used for the approximate solution of the problem under consideration.
We develop a model of an electrorheological fluid such that the fluid is considered as an anisotropic one with the viscosity depending on the second invariant of the rate of strain tensor, on the module of the vector of electric field strength, and o n the angle between the vectors of velocity and electric field. We study general problems on the flow of such fluids at nonhomogeneous mixed boundary conditions, wherein values of velocities and surface forces are given on different parts of the boundary. We consider the cases where the viscosity function is continuous and singular, equal to infinity, when the second invariant of the rate of strain tensor is equal to zero. In the second case the problem is reduced to a variational inequality. By using the methods of a fixed point, monotonicity, and compactness, we prove existence results for the problems under consideration. Some efficient methods for numerical solution of the problems are examined.
We review proofs of a theorem of Bloch on the absence of macroscopic stationary currents in quantum systems. The standard proof shows that the current in 1D vanishes in the large volume limit under rather general conditions. In higher dimension, the total current across a cross-section does not need to vanish in gapless systems but it does vanish in gapped systems. We focus on the latter claim and give a self-contained proof motivated by a recently introduced index for many-body charge transport in quantum lattice systems having a conserved $U(1)$-charge.
In this paper we improve the understanding of the cofactor conditions, which are particular conditions of geometric compatibility between austenite and martensite, that are believed to influence reversibility of martensitic transformations. We also i ntroduce a physically motivated metric to measure how closely a material satisfies the cofactor conditions, as the two currently used in the literature can give contradictory results. We introduce a new condition of super-compatibility between martensitic laminates, which potentially reduces hysteresis and enhances reversibility. Finally, we show that this new condition of super-compatibility is very closely satisfied by Zn45Au30Cu25, the first of a class of recently discovered materials, fabricated to closely satisfy the cofactor conditions, and undergoing ultra-reversible martensitic transformation.
We make use of the Maupertuis -- Jacobi correspondence, well known in Classical Mechanics, to simplify 2-D asymptotic formulas based on Maslovs canonical operator, when constructing Lagrangian manifolds invariant with respect to phase flows for Hamil tonians of the form $F(x,|p|)$. As examples we consider Hamiltonians coming from the Schrodinger equation, the 2-D Dirac equation for graphene and linear water wave theory.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا