ترغب بنشر مسار تعليمي؟ اضغط هنا

Over-parametrized deep neural networks do not generalize well

64   0   0.0 ( 0 )
 نشر من قبل Michael Kohler
 تاريخ النشر 2019
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

Recently it was shown in several papers that backpropagation is able to find the global minimum of the empirical risk on the training data using over-parametrized deep neural networks. In this paper a similar result is shown for deep neural networks with the sigmoidal squasher activation function in a regression setting, and a lower bound is presented which proves that these networks do not generalize well on a new data in the sense that they do not achieve the optimal minimax rate of convergence for estimation of smooth regression functions.

قيم البحث

اقرأ أيضاً

This work is substituted by the paper in arXiv:2011.14066. Stochastic gradient descent is the de facto algorithm for training deep neural networks (DNNs). Despite its popularity, it still requires fine tuning in order to achieve its best performanc e. This has led to the development of adaptive methods, that claim automatic hyper-parameter optimization. Recently, researchers have studied both algorithmic classes via toy examples: e.g., for over-parameterized linear regression, Wilson et. al. (2017) shows that, while SGD always converges to the minimum-norm solution, adaptive methods show no such inclination, leading to worse generalization capabilities. Our aim is to study this conjecture further. We empirically show that the minimum weight norm is not necessarily the proper gauge of good generalization in simplified scenaria, and different models found by adaptive methods could outperform plain gradient methods. In practical DNN settings, we observe that adaptive methods can outperform SGD, with larger weight norm output models, but without necessarily reducing the amount of tuning required.
In this paper, we study the properties of robust nonparametric estimation using deep neural networks for regression models with heavy tailed error distributions. We establish the non-asymptotic error bounds for a class of robust nonparametric regress ion estimators using deep neural networks with ReLU activation under suitable smoothness conditions on the regression function and mild conditions on the error term. In particular, we only assume that the error distribution has a finite p-th moment with p greater than one. We also show that the deep robust regression estimators are able to circumvent the curse of dimensionality when the distribution of the predictor is supported on an approximate lower-dimensional set. An important feature of our error bound is that, for ReLU neural networks with network width and network size (number of parameters) no more than the order of the square of the dimensionality d of the predictor, our excess risk bounds depend sub-linearly on d. Our assumption relaxes the exact manifold support assumption, which could be restrictive and unrealistic in practice. We also relax several crucial assumptions on the data distribution, the target regression function and the neural networks required in the recent literature. Our simulation studies demonstrate that the robust methods can significantly outperform the least squares method when the errors have heavy-tailed distributions and illustrate that the choice of loss function is important in the context of deep nonparametric regression.
In non-convex settings, it is established that the behavior of gradient-based algorithms is different in the vicinity of local structures of the objective function such as strict and non-strict saddle points, local and global minima and maxima. It is therefore crucial to describe the landscape of non-convex problems. That is, to describe as well as possible the set of points of each of the above categories. In this work, we study the landscape of the empirical risk associated with deep linear neural networks and the square loss. It is known that, under weak assumptions, this objective function has no spurious local minima and no local maxima. We go a step further and characterize, among all critical points, which are global minimizers, strict saddle points, and non-strict saddle points. We enumerate all the associated critical values. The characterization is simple, involves conditions on the ranks of partial matrix products, and sheds some light on global convergence or implicit regularization that have been proved or observed when optimizing a linear neural network. In passing, we also provide an explicit parameterization of the set of all global minimizers and exhibit large sets of strict and non-strict saddle points.
Neural networks are becoming an increasingly important tool in applications. However, neural networks are not widely used in statistical genetics. In this paper, we propose a new neural networks method called expectile neural networks. When the size of parameter is too large, the standard maximum likelihood procedures may not work. We use sieve method to constrain parameter space. And we prove its consistency and normality under nonparametric regression framework.
We consider the dynamic of gradient descent for learning a two-layer neural network. We assume the input $xinmathbb{R}^d$ is drawn from a Gaussian distribution and the label of $x$ satisfies $f^{star}(x) = a^{top}|W^{star}x|$, where $ainmathbb{R}^d$ is a nonnegative vector and $W^{star} inmathbb{R}^{dtimes d}$ is an orthonormal matrix. We show that an over-parametrized two-layer neural network with ReLU activation, trained by gradient descent from random initialization, can provably learn the ground truth network with population loss at most $o(1/d)$ in polynomial time with polynomial samples. On the other hand, we prove that any kernel method, including Neural Tangent Kernel, with a polynomial number of samples in $d$, has population loss at least $Omega(1 / d)$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا