ترغب بنشر مسار تعليمي؟ اضغط هنا

Projected BNNs: Avoiding weight-space pathologies by learning latent representations of neural network weights

170   0   0.0 ( 0 )
 نشر من قبل Melanie F. Pradier
 تاريخ النشر 2018
والبحث باللغة English




اسأل ChatGPT حول البحث

As machine learning systems get widely adopted for high-stake decisions, quantifying uncertainty over predictions becomes crucial. While modern neural networks are making remarkable gains in terms of predictive accuracy, characterizing uncertainty over the parameters of these models is challenging because of the high dimensionality and complex correlations of the network parameter space. This paper introduces a novel variational inference framework for Bayesian neural networks that (1) encodes complex distributions in high-dimensional parameter space with representations in a low-dimensional latent space, and (2) performs inference efficiently on the low-dimensional representations. Across a large array of synthetic and real-world datasets, we show that our method improves uncertainty characterization and model generalization when compared with methods that work directly in the parameter space.



قيم البحث

اقرأ أيضاً

There is an urgent need to build models to tackle Indoor Air Quality issue. Since the model should be accurate and fast, Reduced Order Modelling technique is used to reduce the dimensionality of the problem. The accuracy of the model, that represent a dynamic system, is improved integrating real data coming from sensors using Data Assimilation techniques. In this paper, we formulate a new methodology called Latent Assimilation that combines Data Assimilation and Machine Learning. We use a Convolutional neural network to reduce the dimensionality of the problem, a Long-Short-Term-Memory to build a surrogate model of the dynamic system and an Optimal Interpolated Kalman Filter to incorporate real data. Experimental results are provided for CO2 concentration within an indoor space. This methodology can be used for example to predict in real-time the load of virus, such as the SARS-COV-2, in the air by linking it to the concentration of CO2.
In this paper we apply a compressibility loss that enables learning highly compressible neural network weights. The loss was previously proposed as a measure of negated sparsity of a signal, yet in this paper we show that minimizing this loss also en forces the non-zero parts of the signal to have very low entropy, thus making the entire signal more compressible. For an optimization problem where the goal is to minimize the compressibility loss (the objective), we prove that at any critical point of the objective, the weight vector is a ternary signal and the corresponding value of the objective is the squared root of the number of non-zero elements in the signal, thus directly related to sparsity. In the experiments, we train neural networks with the compressibility loss and we show that the proposed method achieves weight sparsity and compression ratios comparable with the state-of-the-art.
403 - Ozsel Kilinc , Ismail Uysal 2018
In this paper, we propose a novel unsupervised clustering approach exploiting the hidden information that is indirectly introduced through a pseudo classification objective. Specifically, we randomly assign a pseudo parent-class label to each observa tion which is then modified by applying the domain specific transformation associated with the assigned label. Generated pseudo observation-label pairs are subsequently used to train a neural network with Auto-clustering Output Layer (ACOL) that introduces multiple softmax nodes for each pseudo parent-class. Due to the unsupervised objective based on Graph-based Activity Regularization (GAR) terms, softmax duplicates of each parent-class are specialized as the hidden information captured through the help of domain specific transformations is propagated during training. Ultimately we obtain a k-means friendly latent representation. Furthermore, we demonstrate how the chosen transformation type impacts performance and helps propagate the latent information that is useful in revealing unknown clusters. Our results show state-of-the-art performance for unsupervised clustering tasks on MNIST, SVHN and USPS datasets, with the highest accuracies reported to date in the literature.
Deep neural networks can empirically perform efficient hierarchical learning, in which the layers learn useful representations of the data. However, how they make use of the intermediate representations are not explained by recent theories that relat e them to shallow learners such as kernels. In this work, we demonstrate that intermediate neural representations add more flexibility to neural networks and can be advantageous over raw inputs. We consider a fixed, randomly initialized neural network as a representation function fed into another trainable network. When the trainable network is the quadratic Taylor model of a wide two-layer network, we show that neural representation can achieve improved sample complexities compared with the raw input: For learning a low-rank degree-$p$ polynomial ($p geq 4$) in $d$ dimension, neural representation requires only $tilde{O}(d^{lceil p/2 rceil})$ samples, while the best-known sample complexity upper bound for the raw input is $tilde{O}(d^{p-1})$. We contrast our result with a lower bound showing that neural representations do not improve over the raw input (in the infinite width limit), when the trainable network is instead a neural tangent kernel. Our results characterize when neural representations are beneficial, and may provide a new perspective on why depth is important in deep learning.
Graph representation learning is a fundamental problem for modeling relational data and benefits a number of downstream applications. Traditional Bayesian-based graph models and recent deep learning based GNN either suffer from impracticability or la ck interpretability, thus combined models for undirected graphs have been proposed to overcome the weaknesses. As a large portion of real-world graphs are directed graphs (of which undirected graphs are special cases), in this paper, we propose a Deep Latent Space Model (DLSM) for directed graphs to incorporate the traditional latent variable based generative model into deep learning frameworks. Our proposed model consists of a graph convolutional network (GCN) encoder and a stochastic decoder, which are layer-wise connected by a hierarchical variational auto-encoder architecture. By specifically modeling the degree heterogeneity using node random factors, our model possesses better interpretability in both community structure and degree heterogeneity. For fast inference, the stochastic gradient variational Bayes (SGVB) is adopted using a non-iterative recognition model, which is much more scalable than traditional MCMC-based methods. The experiments on real-world datasets show that the proposed model achieves the state-of-the-art performances on both link prediction and community detection tasks while learning interpretable node embeddings. The source code is available at https://github.com/upperr/DLSM.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا