ﻻ يوجد ملخص باللغة العربية
Optical soliton dynamics can cause the extreme alteration of the temporal and spectral shape of a propagating light pulse. They occur at up to kilowatt peak powers in glass-core optical fibres and the gigawatt level in gas-filled microstructured hollow-core fibres. Here we demonstrate optical soliton dynamics in large-core hollow capillary fibres. This enables scaling of soliton effects by several orders of magnitude to the multi-mJ energy and terawatt peak power level. We experimentally demonstrate two key soliton effects. First, we observe self-compression to sub-cycle pulses and infer the creation of sub-femtosecond field waveforms - a route to high-power optical attosecond pulse generation. Second, we efficiently generate continuously tunable high-energy (1 to 16 $mu$J) pulses in the vacuum and deep ultraviolet (110 nm to 400 nm) through resonant dispersive-wave emission.These results promise to be the foundation of a new generation of table-top light sources for ultrafast strong-field physics and advanced spectroscopy.
We demonstrate soliton-effect pulse compression in mm-long photonic crystal waveguides resulting from strong anomalous dispersion and self-phase modulation. Compression from 3ps to 580fs, at low pulse energies(~10pJ), is measured via autocorrelation.
We study soliton pulse compression in materials with cascaded quadratic nonlinearities, and show that the group-velocity mismatch creates two different temporally nonlocal regimes. They correspond to what is known as the stationary and nonstationary
Gas-filled hollow-core photonic crystal fiber (PCF) is used for efficient nonlinear temporal compression of femtosecond laser pulses, two main schemes being direct soliton-effect self-compression, and spectral broadening followed by phase compensatio
We present a detailed study of soliton compression of ultra-short pulses based on phase-mismatched second-harmonic generation (textit{i.e.}, the cascaded quadratic nonlinearity) in bulk quadratic nonlinear media. The single-cycle propagation equation
Direct generation of ultrashort, transform-limited pulses in a laser resonator is observed theoretically and experimentally. This constitutes a new type of ultrashort pulse generation in mode-locked lasers: in contrast to the well-known solitons (hyp