ترغب بنشر مسار تعليمي؟ اضغط هنا

Insight into the charge density wave gap from contrast inversion in topographic STM images

73   0   0.0 ( 0 )
 نشر من قبل Alessandro Scarfato Dr.
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Charge density waves (CDWs) are understood in great details in one dimension, but they remain largely enigmatic in two dimensional systems. In particular, numerous aspects of the associated energy gap and the formation mechanism are not fully understood. Two long standing riddles are the amplitude and position of the CDW gap with respect to the Fermi level ($E_F$) and the frequent absence of CDW contrast inversion (CI) between opposite bias scanning tunneling microscopy (STM) images. Here, we find compelling evidence that these two issues are intimately related. Combining density functional theory and STM to analyse the CDW pattern and modulation amplitude in 1$T$-TiSe$_2$, we find that CI takes place at an unexpected negative sample bias because the CDW gap opens away from $E_F$, deep inside the valence band. This bias becomes increasingly negative as the CDW gap shifts to higher binding energy with electron doping. This study shows the importance of CI in STM images to identify periodic modulations with a CDW and to gain valuable insight into the CDW gap, whose measurement is notoriously controversial.

قيم البحث

اقرأ أيضاً

122 - P. Chen , W.-W. Pai , Y.-H. Chan 2018
Single layers of transition metal dichalcogenides (TMDCs) are excellent candidates for electronic applications beyond the graphene platform; many of them exhibit novel properties including charge density waves (CDWs) and magnetic ordering. CDWs in th ese single layers are generally a planar projection of the corresponding bulk CDWs because of the quasi-two-dimensional nature of TMDCs; a different CDW symmetry is unexpected. We report herein the successful creation of pristine single-layer VSe$_2$, which shows a ($sqrt7 times sqrt3$) CDW in contrast to the (4 $times$ 4) CDW for the layers in bulk VSe$_2$. Angle-resolved photoemission spectroscopy (ARPES) from the single layer shows a sizable ($sqrt7 times sqrt3$) CDW gap of $sim$100 meV at the zone boundary, a 220 K CDW transition temperature twice the bulk value, and no ferromagnetic exchange splitting as predicted by theory. This robust CDW with an exotic broken symmetry as the ground state is explained via a first-principles analysis. The results illustrate a unique CDW phenomenon in the two-dimensional limit.
In recent theoretical and experimental investigations, researchers have linked the low-energy field theory of a Weyl semimetal gapped with a charge-density wave (CDW) to high-energy theories with axion electrodynamics. However, it remains an open que stion whether a lattice regularization of the dynamical Weyl-CDW is in fact a single-particle axion insulator (AXI). In this Letter, we use analytic and numerical methods to study both lattice-commensurate and incommensurate minimal (magnetic) Weyl-CDW phases in the mean-field state. We observe that, as previously predicted from field theory, the two inversion- ($mathcal{I}$-) symmetric Weyl-CDWs with $phi = 0,pi$ differ by a topological axion angle $deltatheta_{phi}=pi$. However, we crucially discover that $neither$ of the minimal Weyl-CDW phases at $phi=0,pi$ is individually an AXI; they are instead quantum anomalous Hall (QAH) and obstructed QAH insulators that differ by a fractional translation in the modulated cell, analogous to the two phases of the Su-Schrieffer-Heeger model of polyacetylene. Using symmetry indicators of band topology and non-abelian Berry phase, we demonstrate that our results generalize to multi-band systems with only two Weyl fermions, establishing that minimal Weyl-CDWs unavoidably carry nontrivial Chern numbers that prevent the observation of a static magnetoelectric response. We discuss the experimental implications of our findings, and provide models and analysis generalizing our results to nonmagnetic Weyl- and Dirac-CDWs.
Density functional theory and density functional perturbation theory are used to investigate the electronic and vibrational properties of TiS$_2$. Within the local density approximation the material is a semi-metal both in the bulk and in the monolay er form. Most interestingly we observe a Kohn anomaly in the bulk phonon dispersion, which turns into a charge density wave instability when TiS$_2$ is thinned to less than four monolayers. Such charge density wave phase can be tuned by compressive strain, which appears to be the control parameter of the instability.
Plasmons in two-dimensional (2D) materials beyond graphene have recently gained much attention. However, the experimental investigation is limited due to the lack of suitable materials. Here, we experimentally demonstrate localized plasmons in a corr elated 2D charge-density-wave (CDW) material: 2H-TaSe2. The plasmon resonance can cover a broad spectral range from the terahertz (40 {mu}m) to the telecom (1.55 {mu}m) region, which is further tunable by changing thickness and dielectric environments. The plasmon dispersion flattens at large wave vectors, resulted from the universal screening effect of interband transitions. More interestingly, anomalous temperature dependence of plasmon resonances associated with CDW excitations is observed. In the CDW phase, the plasmon peak close to the CDW excitation frequency becomes wider and asymmetric, mimicking two coupled oscillators. Our study not only reveals the universal role of the intrinsic screening on 2D plasmons, but also opens an avenue for tunable plasmons in 2D correlated materials.
Scanning tunnelling microscopy and low energy electron diffraction show a dimerization-like reconstruction in the one-dimensional atomic chains on Bi(114) at low temperatures. While one-dimensional systems are generally unstable against such a distor tion, its observation is not expected for this particular surface, since there are several factors that should prevent it: One is the particular spin texture of the Fermi surface, which resembles a one-dimensional topological state, and spin protection should hence prevent the formation of the reconstruction. The second is the very short nesting vector $2 k_F$, which is inconsistent with the observed lattice distortion. A nesting-driven mechanism of the reconstruction is indeed excluded by the absence of any changes in the electronic structure near the Fermi surface, as observed by angle-resolved photoemission spectroscopy. However, distinct changes in the electronic structure at higher binding energies are found to accompany the structural phase transition. This, as well as the observed short correlation length of the pairing distortion, suggest that the transition is of the strong coupling type and driven by phonon entropy rather than electronic entropy.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا