ترغب بنشر مسار تعليمي؟ اضغط هنا

Dynamic Variational Study of Chaos: Spin Glasses in Three Dimensions

86   0   0.0 ( 0 )
 نشر من قبل Victor Martin-Mayor
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have introduced a variational method to improve the computation of integrated correlation times in the Parallel Tempering Dynamics, obtaining a better estimate (a lower bound, at least) of the exponential correlation time. Using this determination of the correlation times, we revisited the problem of the characterization of the chaos in temperature in finite dimensional spin glasses by means of the study of correlations between different chaos indicators computed in the static and the correlation times of the Parallel Tempering dynamics. The sample-distribution of the characteristic time for the Parallel Tempering dynamics turns out to be fat-tailed and it obeys finite-size scaling.



قيم البحث

اقرأ أيضاً

We use a non-equilibrium simulation method to study the spin glass transition in three-dimensional Ising spin glasses. The transition point is repeatedly approached at finite velocity $v$ (temperature change versus time) in Monte Carlo simulations st arting at a high temperature. The normally problematic critical slowing-down is not hampering this kind of approach, since the system equilibrates quickly at the initial temperature and the slowing-down is merely reflected in the dynamic scaling of the non-equilibrium order parameter with $v$ and the system size. The equilibrium limit does not have to be reached. For the dynamic exponent we obtain $z = 5.85(9)$ for bimodal couplings distribution and $z=6.00(10)$ for the Gaussian case, thus supporting universal dynamic scaling (in contrast to recent claims of non-universal behavior).
527 - Efe Ilker , A. Nihat Berker 2013
In spin-glass systems, frustration can be adjusted continuously and considerably, without changing the antiferromagnetic bond probability p, by using locally correlated quenched randomness, as we demonstrate here on hypercubic lattices and hierarchic al lattices. Such overfrustrated and underfrustrated Ising systems on hierarchical lattices in d=3 and 2 are studied. With the removal of just 51 % of frustration, a spin-glass phase occurs in d=2. With the addition of just 33 % frustration, the spin-glass phase disappears in d=3. Sequences of 18 different phase diagrams for different levels of frustration are calculated in both dimensions. In general, frustration lowers the spin-glass ordering temperature. At low temperatures, increased frustration favors the spin-glass phase (before it disappears) over the ferromagnetic phase and symmetrically the antiferromagnetic phase. When any amount, including infinitesimal, frustration is introduced, the chaotic rescaling of local interactions occurs in the spin-glass phase. Chaos increases with increasing frustration, as seen from the increased positive value of the calculated Lyapunov exponent $lambda$, starting from $lambda =0$ when frustration is absent. The calculated runaway exponent $y_R$ of the renormalization-group flows decreases with increasing frustration to $y_R=0$ when the spin-glass phase disappears. From our calculations of entropy and specific heat curves in d=3, it is seen that frustration lowers in temperature the onset of both long- and short-range order in spin-glass phases, but is more effective on the former. From calculations of the entropy as a function of antiferromagnetic bond concentration p, it is seen that the ground-state and low-temperature entropy already mostly sets in within the ferromagnetic and antiferromagnetic phases, before the spin-glass phase is reached.
178 - Stefan Boettcher 2008
Numerical results for the local field distributions of a family of Ising spin-glass models are presented. In particular, the Edwards-Anderson model in dimensions two, three, and four is considered, as well as spin glasses with long-range power-law-mo dulated interactions that interpolate between a nearest-neighbour Edwards-Anderson system in one dimension and the infinite-range Sherrington-Kirkpatrick model. Remarkably, the local field distributions only depend weakly on the range of the interactions and the dimensionality, and show strong similarities except for near zero local field.
The statics-dynamics correspondence in spin glasses relate non-equilibrium results on large samples (the experimental realm) with equilibrium quantities computed on small systems (the typical arena for theoretical computations). Here we employ static s-dynamics equivalence to study the Ising spin-glass critical behavior in three dimensions. By means of Monte Carlo simulation, we follow the growth of the coherence length (the size of the glassy domains), on lattices too large to be thermalized. Thanks to the large coherence lengths we reach, we are able to obtain accurate results in excellent agreement with the best available equilibrium computations. To do so, we need to clarify the several physical meanings of the dynamic exponent close to the critical temperature.
120 - C.M. Newman 2001
We present a general theorem restricting properties of interfaces between thermodynamic states and apply it to the spin glass excitations observed numerically by Krzakala-Martin and Palassini-Young in spatial dimensions d=3 and 4. We show that such e xcitations, with interface dimension smaller than d, cannot yield regionally congruent thermodynamic states. More generally, zero density interfaces of translation-covariant excitations cannot be pinned (by the disorder) in any d but rather must deflect to infinity in the thermodynamic limit. Additional consequences concerning regional congruence in spin glasses and other systems are discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا