ترغب بنشر مسار تعليمي؟ اضغط هنا

Mesh-TensorFlow: Deep Learning for Supercomputers

207   0   0.0 ( 0 )
 نشر من قبل Noam Shazeer
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Batch-splitting (data-parallelism) is the dominant distributed Deep Neural Network (DNN) training strategy, due to its universal applicability and its amenability to Single-Program-Multiple-Data (SPMD) programming. However, batch-splitting suffers from problems including the inability to train very large models (due to memory constraints), high latency, and inefficiency at small batch sizes. All of these can be solved by more general distribution strategies (model-parallelism). Unfortunately, efficient model-parallel algorithms tend to be complicated to discover, describe, and to implement, particularly on large clusters. We introduce Mesh-TensorFlow, a language for specifying a general class of distributed tensor computations. Where data-parallelism can be viewed as splitting tensors and operations along the batch dimension, in Mesh-TensorFlow, the user can specify any tensor-dimensions to be split across any dimensions of a multi-dimensional mesh of processors. A Mesh-TensorFlow graph compiles into a SPMD program consisting of parallel operations coupled with collective communication primitives such as Allreduce. We use Mesh-TensorFlow to implement an efficient data-parallel, model-parallel version of the Transformer sequence-to-sequence model. Using TPU meshes of up to 512 cores, we train Transformer models with up to 5 billion parameters, surpassing state of the art results on WMT14 English-to-French translation task and the one-billion-word language modeling benchmark. Mesh-Tensorflow is available at https://github.com/tensorflow/mesh .



قيم البحث

اقرأ أيضاً

Swift for TensorFlow is a deep learning platform that scales from mobile devices to clusters of hardware accelerators in data centers. It combines a language-integrated automatic differentiation system and multiple Tensor implementations within a mod ern ahead-of-time compiled language oriented around mutable value semantics. The resulting platform has been validated through use in over 30 deep learning models and has been employed across data center and mobile applications.
Specialized Deep Learning (DL) acceleration stacks, designed for a specific set of frameworks, model architectures, operators, and data types, offer the allure of high performance while sacrificing flexibility. Changes in algorithms, models, operator s, or numerical systems threaten the viability of specialized hardware accelerators. We propose VTA, a programmable deep learning architecture template designed to be extensible in the face of evolving workloads. VTA achieves this flexibility via a parametrizable architecture, two-level ISA, and a JIT compiler. The two-level ISA is based on (1) a task-ISA that explicitly orchestrates concurrent compute and memory tasks and (2) a microcode-ISA which implements a wide variety of operators with single-cycle tensor-tensor operations. Next, we propose a runtime system equipped with a JIT compiler for flexible code-generation and heterogeneous execution that enables effective use of the VTA architecture. VTA is integrated and open-sourced into Apache TVM, a state-of-the-art deep learning compilation stack that provides flexibility for diverse models and divergent hardware backends. We propose a flow that performs design space exploration to generate a customized hardware architecture and software operator library that can be leveraged by mainstream learning frameworks. We demonstrate our approach by deploying optimized deep learning models used for object classification and style transfer on edge-class FPGAs.
Federated learning (FL) is a distributed deep learning method which enables multiple participants, such as mobile phones and IoT devices, to contribute a neural network model while their private training data remains in local devices. This distribute d approach is promising in the edge computing system where have a large corpus of decentralized data and require high privacy. However, unlike the common training dataset, the data distribution of the edge computing system is imbalanced which will introduce biases in the model training and cause a decrease in accuracy of federated learning applications. In this paper, we demonstrate that the imbalanced distributed training data will cause accuracy degradation in FL. To counter this problem, we build a self-balancing federated learning framework call Astraea, which alleviates the imbalances by 1) Global data distribution based data augmentation, and 2) Mediator based multi-client rescheduling. The proposed framework relieves global imbalance by runtime data augmentation, and for averaging the local imbalance, it creates the mediator to reschedule the training of clients based on Kullback-Leibler divergence (KLD) of their data distribution. Compared with FedAvg, the state-of-the-art FL algorithm, Astraea shows +5.59% and +5.89% improvement of top-1 accuracy on the imbalanced EMNIST and imbalanced CINIC-10 datasets, respectively. Meanwhile, the communication traffic of Astraea can be 82% lower than that of FedAvg.
We introduce TensorFlow Agents, an efficient infrastructure paradigm for building parallel reinforcement learning algorithms in TensorFlow. We simulate multiple environments in parallel, and group them to perform the neural network computation on a b atch rather than individual observations. This allows the TensorFlow execution engine to parallelize computation, without the need for manual synchronization. Environments are stepped in separate Python processes to progress them in parallel without interference of the global interpreter lock. As part of this project, we introduce BatchPPO, an efficient implementation of the proximal policy optimization algorithm. By open sourcing TensorFlow Agents, we hope to provide a flexible starting point for future projects that accelerates future research in the field.
We consider the problem of decentralized deep learning where multiple agents collaborate to learn from a distributed dataset. While there exist several decentralized deep learning approaches, the majority consider a central parameter-server topology for aggregating the model parameters from the agents. However, such a topology may be inapplicable in networked systems such as ad-hoc mobile networks, field robotics, and power network systems where direct communication with the central parameter server may be inefficient. In this context, we propose and analyze a novel decentralized deep learning algorithm where the agents interact over a fixed communication topology (without a central server). Our algorithm is based on the heavy-ball acceleration method used in gradient-based optimization. We propose a novel consensus protocol where each agent shares with its neighbors its model parameters as well as gradient-momentum values during the optimization process. We consider both strongly convex and non-convex objective functions and theoretically analyze our algorithms performance. We present several empirical comparisons with competing decentralized learning methods to demonstrate the efficacy of our approach under different communication topologies.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا