ترغب بنشر مسار تعليمي؟ اضغط هنا

Astraea: Self-balancing Federated Learning for Improving Classification Accuracy of Mobile Deep Learning Applications

358   0   0.0 ( 0 )
 نشر من قبل Moming Duan
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Federated learning (FL) is a distributed deep learning method which enables multiple participants, such as mobile phones and IoT devices, to contribute a neural network model while their private training data remains in local devices. This distributed approach is promising in the edge computing system where have a large corpus of decentralized data and require high privacy. However, unlike the common training dataset, the data distribution of the edge computing system is imbalanced which will introduce biases in the model training and cause a decrease in accuracy of federated learning applications. In this paper, we demonstrate that the imbalanced distributed training data will cause accuracy degradation in FL. To counter this problem, we build a self-balancing federated learning framework call Astraea, which alleviates the imbalances by 1) Global data distribution based data augmentation, and 2) Mediator based multi-client rescheduling. The proposed framework relieves global imbalance by runtime data augmentation, and for averaging the local imbalance, it creates the mediator to reschedule the training of clients based on Kullback-Leibler divergence (KLD) of their data distribution. Compared with FedAvg, the state-of-the-art FL algorithm, Astraea shows +5.59% and +5.89% improvement of top-1 accuracy on the imbalanced EMNIST and imbalanced CINIC-10 datasets, respectively. Meanwhile, the communication traffic of Astraea can be 82% lower than that of FedAvg.

قيم البحث

اقرأ أيضاً

149 - Wei Liu , Li Chen , 2021
Decentralized federated learning (DFL) is a powerful framework of distributed machine learning and decentralized stochastic gradient descent (SGD) is a driving engine for DFL. The performance of decentralized SGD is jointly influenced by communicatio n-efficiency and convergence rate. In this paper, we propose a general decentralized federated learning framework to strike a balance between communication-efficiency and convergence performance. The proposed framework performs both multiple local updates and multiple inter-node communications periodically, unifying traditional decentralized SGD methods. We establish strong convergence guarantees for the proposed DFL algorithm without the assumption of convex objective function. The balance of communication and computation rounds is essential to optimize decentralized federated learning under constrained communication and computation resources. For further improving communication-efficiency of DFL, compressed communication is applied to DFL, named DFL with compressed communication (C-DFL). The proposed C-DFL exhibits linear convergence for strongly convex objectives. Experiment results based on MNIST and CIFAR-10 datasets illustrate the superiority of DFL over traditional decentralized SGD methods and show that C-DFL further enhances communication-efficiency.
129 - Ji Wang , Bokai Cao , Philip S. Yu 2018
Recent years have witnessed an explosive growth of mobile devices. Mobile devices are permeating every aspect of our daily lives. With the increasing usage of mobile devices and intelligent applications, there is a soaring demand for mobile applicati ons with machine learning services. Inspired by the tremendous success achieved by deep learning in many machine learning tasks, it becomes a natural trend to push deep learning towards mobile applications. However, there exist many challenges to realize deep learning in mobile applications, including the contradiction between the miniature nature of mobile devices and the resource requirement of deep neural networks, the privacy and security concerns about individuals data, and so on. To resolve these challenges, during the past few years, great leaps have been made in this area. In this paper, we provide an overview of the current challenges and representative achievements about pushing deep learning on mobile devices from three aspects: training with mobile data, efficient inference on mobile devices, and applications of mobile deep learning. The former two aspects cover the primary tasks of deep learning. Then, we go through our two recent applications that apply the data collected by mobile devices to inferring mood disturbance and user identification. Finally, we conclude this paper with the discussion of the future of this area.
Federated learning (FL) is a distributed learning paradigm that enables a large number of mobile devices to collaboratively learn a model under the coordination of a central server without sharing their raw data. Despite its practical efficiency and effectiveness, the iterative on-device learning process (e.g., local computations and global communications with the server) incurs a considerable cost in terms of learning time and energy consumption, which depends crucially on the number of selected clients and the number of local iterations in each training round. In this paper, we analyze how to design adaptive FL in mobile edge networks that optimally chooses these essential control variables to minimize the total cost while ensuring convergence. We establish the analytical relationship between the total cost and the control variables with the convergence upper bound. To efficiently solve the cost minimization problem, we develop a low-cost sampling-based algorithm to learn the convergence related unknown parameters. We derive important solution properties that effectively identify the design principles for different optimization metrics. Practically, we evaluate our theoretical results both in a simulated environment and on a hardware prototype. Experimental evidence verifies our derived properties and demonstrates that our proposed solution achieves near-optimal performance for different optimization metrics for various datasets and heterogeneous system and statistical settings.
Federated Learning is a novel paradigm that involves learning from data samples distributed across a large network of clients while the data remains local. It is, however, known that federated learning is prone to multiple system challenges including system heterogeneity where clients have different computation and communication capabilities. Such heterogeneity in clients computation speeds has a negative effect on the scalability of federated learning algorithms and causes significant slow-down in their runtime due to the existence of stragglers. In this paper, we propose a novel straggler-resilient federated learning method that incorporates statistical characteristics of the clients data to adaptively select the clients in order to speed up the learning procedure. The key idea of our algorithm is to start the training procedure with faster nodes and gradually involve the slower nodes in the model training once the statistical accuracy of the data corresponding to the current participating nodes is reached. The proposed approach reduces the overall runtime required to achieve the statistical accuracy of data of all nodes, as the solution for each stage is close to the solution of the subsequent stage with more samples and can be used as a warm-start. Our theoretical results characterize the speedup gain in comparison to standard federated benchmarks for strongly convex objectives, and our numerical experiments also demonstrate significant speedups in wall-clock time of our straggler-resilient method compared to federated learning benchmarks.
In the paper, we propose an effective and efficient Compositional Federated Learning (ComFedL) algorithm for solving a new compositional Federated Learning (FL) framework, which frequently appears in many machine learning problems with a hierarchical structure such as distributionally robust federated learning and model-agnostic meta learning (MAML). Moreover, we study the convergence analysis of our ComFedL algorithm under some mild conditions, and prove that it achieves a fast convergence rate of $O(frac{1}{sqrt{T}})$, where $T$ denotes the number of iteration. To the best of our knowledge, our algorithm is the first work to bridge federated learning with composition stochastic optimization. In particular, we first transform the distributionally robust FL (i.e., a minimax optimization problem) into a simple composition optimization problem by using KL divergence regularization. At the same time, we also first transform the distribution-agnostic MAML problem (i.e., a minimax optimization problem) into a simple composition optimization problem. Finally, we apply two popular machine learning tasks, i.e., distributionally robust FL and MAML to demonstrate the effectiveness of our algorithm.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا