ترغب بنشر مسار تعليمي؟ اضغط هنا

Hot-star wind models with magnetically split line blanketing

115   0   0.0 ( 0 )
 نشر من قبل Jiri Krticka
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English
 تأليف J. Krticka




اسأل ChatGPT حول البحث

Fraction of hot stars posses strong magnetic fields that channel their radiatively driven outflows. We study the influence of line splitting in the magnetic field (Zeeman effect) on the wind properties. We use our own global wind code with radiative transfer in the comoving frame to understand the influence of the Zeeman splitting on the line force. We show that the Zeeman splitting has a negligible influence on the line force for magnetic fields that are weaker than about 100~kG. This means that the wind mass-loss rates and terminal velocities are not affected by the magnetic line splitting for magnetic fields as are typically found on the surface of nondegenerate stars. Neither have we found any strong flux variability that would be due to the magnetically split line blanketing.



قيم البحث

اقرأ أيضاً

218 - Jiri Krticka , Jiri Kubat 2017
We provide mass-loss rate predictions for O stars from Large and Small Magellanic Clouds. We calculate global (unified, hydrodynamic) model atmospheres of main sequence, giant, and supergiant stars for chemical composition corresponding to Magellanic Clouds. The models solve radiative transfer equation in comoving frame, kinetic equilibrium equations (also known as NLTE equations), and hydrodynamical equations from (quasi-)hydrostatic atmosphere to expanding stellar wind. The models allow us to predict wind density, velocity, and temperature (consequently also the terminal wind velocity and the mass-loss rate) just from basic global stellar parameters. As a result of their lower metallicity, the line radiative driving is weaker leading to lower wind mass-loss rates with respect to the Galactic stars. We provide a formula that fits the mass-loss rate predicted by our models as a function of stellar luminosity and metallicity. On average, the mass-loss rate scales with metallicity as $ dot Msim Z^{0.59}$. The predicted mass-loss rates are lower than mass-loss rates derived from H$alpha$ diagnostics and can be reconciled with observational results assuming clumping factor $C_text{c}=9$. On the other hand, the predicted mass-loss rates either agree or are slightly higher than the mass-loss rates derived from ultraviolet wind line profiles. The calculated ion{P}{v} ionization fractions also agree with values derived from observations for LMC stars with $T_text{eff}leq40,000,$K. Taken together, our theoretical predictions provide reasonable models with consistent mass-loss rate determination, which can be used for quantitative study of stars from Magellanic Clouds.
160 - J.-F. Donati , L. Yu , C. Moutou 2016
We report results of an extended spectropolarimetric and photometric monitoring of the weak-line T Tauri star V830 Tau and its recently-detected newborn close-in giant planet. Our observations, carried out within the MaTYSSE programme, were spread ov er 91d, and involved the ESPaDOnS and Narval spectropolarimeters linked to the 3.6m Canada-France-Hawaii, the 2m Bernard Lyot and the 8-m Gemini-North Telescopes. Using Zeeman-Doppler Imaging, we characterize the surface brightness distributions, magnetic topologies and surface differential rotation of V830 Tau at the time of our observations, and demonstrate that both distributions evolve with time beyond what is expected from differential rotation. We also report that near the end of our observations, V830 Tau triggered one major flare and two weaker precursors, showing up as enhanced red-shifted emission in multiple spectral activity proxies. With 3 different filtering techniques, we model the radial velocity (RV) activity jitter (of semi-amplitude 1.2km/s) that V830 Tau generates, successfully retrieve the 68m/s RV planet signal hiding behind the jitter, further confirm the existence of V830 Tau b and better characterize its orbital parameters. We find that the method based on Gaussian-process regression performs best thanks to its higher ability at modelling not only the activity jitter, but also its temporal evolution over the course of our observations, and succeeds at reproducing our RV data down to a rms precision of 35m/s. Our result provides new observational constraints on scenarios of star / planet formation and demonstrates the scientific potential of large-scale searches for close-in giant planets around T Tauri stars.
223 - Jiri Krticka , Jiri Kubat 2017
We calculate global (unified) wind models of main-sequence, giant, and supergiant O stars from our Galaxy. The models are calculated by solving hydrodynamic, kinetic equilibrium (also known as NLTE) and comoving-frame (CMF) radiative transfer equatio ns from the (nearly) hydrostatic photosphere to the supersonic wind. For given stellar parameters, our models predict the photosphere and wind structure and in particular the wind mass-loss rates without any free parameters. Our predicted mass-loss rates are by a factor of 2--5 lower than the commonly used predictions. A possible cause of the difference is abandoning of the Sobolev approximation for the calculation of the radiative force, because our models agree with predictions of CMF NLTE radiative transfer codes. Our predicted mass-loss rates agree nicely with the mass-loss rates derived from observed near-infrared and X-ray line profiles and are slightly lower than mass-loss rates derived from combined UV and H$alpha$ diagnostics. The empirical mass-loss rate estimates corrected for clumping may therefore be reconciled with theoretical predictions in such a way that the average ratio between individual mass-loss rate estimates is not higher than about $ 1.6 $. On the other hand, our predictions are by factor of $ 4.7 $ lower than pure H$alpha$ mass-loss rate estimates and can be reconciled with these values only assuming a microclumping factor of at least eight.
Mass-loss rate is one of the most important stellar parameters. We aim to provide mass-loss rates as a function of subdwarf parameters and to apply the formula for individual subdwarfs, to predict the wind terminal velocities, to estimate the influen ce of the magnetic field and X-ray ionization on the stellar wind, and to study the interaction of subdwarf wind with mass loss from Be and cool companions. We used our kinetic equilibrium (NLTE) wind models with the radiative force determined from the radiative transfer equation in the comoving frame (CMF) to predict the wind structure of subluminous hot stars. Our models solve stationary hydrodynamical equations, that is the equation of continuity, equation of motion, and energy equation and predict basic wind parameters. We predicted the wind mass-loss rate as a function of stellar parameters, namely the stellar luminosity, effective temperature, and metallicity. The derived wind parameters (mass-loss rates and terminal velocities) agree with the values derived from the observations. The radiative force is not able to accelerate the homogeneous wind for stars with low effective temperatures and high surface gravities. We discussed the properties of winds of individual subdwarfs. The X-ray irradiation may inhibit the flow in binaries with compact components. In binaries with Be components, the winds interact with the disk of the Be star. Stellar winds exist in subluminous stars with low gravities or high effective temperatures. Despite their low mass-loss rates, they are detectable in the ultraviolet spectrum and cause X-ray emission. Subdwarf stars may lose a significant part of their mass during the evolution. The angular momentum loss in magnetic subdwarfs with wind may explain their low rotational velocities. Stellar winds are especially important in binaries, where they may be accreted on a compact or cool companion. (abridged)
Radiative pressure exerted by line interactions is a prominent driver of outflows in astrophysical systems, being at work in the outflows emerging from hot stars or from the accretion discs of cataclysmic variables, massive young stars and active gal actic nuclei. In this work, a new radiation hydrodynamical approach to model line-driven hot-star winds is presented. By coupling a Monte Carlo radiative transfer scheme with a finite-volume fluid dynamical method, line-driven mass outflows may be modelled self-consistently, benefiting from the advantages of Monte Carlo techniques in treating multi-line effects, such as multiple scatterings, and in dealing with arbitrary multidimensional configurations. In this work, we introduce our approach in detail by highlighting the key numerical techniques and verifying their operation in a number of simplified applications, specifically in a series of self-consistent, one-dimensional, Sobolev-type, hot-star wind calculations. The utility and accuracy of our approach is demonstrated by comparing the obtained results with the predictions of various formulations of the so-called CAK theory and by confronting the calculations with modern sophisticated techniques of predicting the wind structure. Using these calculations, we also point out some useful diagnostic capabilities our approach provides. Finally we discuss some of the current limitations of our method, some possible extensions and potential future applications.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا