ترغب بنشر مسار تعليمي؟ اضغط هنا

The hot Jupiter of the magnetically-active weak-line T Tauri star V830 Tau

161   0   0.0 ( 0 )
 نشر من قبل Jean-Francois Donati
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report results of an extended spectropolarimetric and photometric monitoring of the weak-line T Tauri star V830 Tau and its recently-detected newborn close-in giant planet. Our observations, carried out within the MaTYSSE programme, were spread over 91d, and involved the ESPaDOnS and Narval spectropolarimeters linked to the 3.6m Canada-France-Hawaii, the 2m Bernard Lyot and the 8-m Gemini-North Telescopes. Using Zeeman-Doppler Imaging, we characterize the surface brightness distributions, magnetic topologies and surface differential rotation of V830 Tau at the time of our observations, and demonstrate that both distributions evolve with time beyond what is expected from differential rotation. We also report that near the end of our observations, V830 Tau triggered one major flare and two weaker precursors, showing up as enhanced red-shifted emission in multiple spectral activity proxies. With 3 different filtering techniques, we model the radial velocity (RV) activity jitter (of semi-amplitude 1.2km/s) that V830 Tau generates, successfully retrieve the 68m/s RV planet signal hiding behind the jitter, further confirm the existence of V830 Tau b and better characterize its orbital parameters. We find that the method based on Gaussian-process regression performs best thanks to its higher ability at modelling not only the activity jitter, but also its temporal evolution over the course of our observations, and succeeds at reproducing our RV data down to a rms precision of 35m/s. Our result provides new observational constraints on scenarios of star / planet formation and demonstrates the scientific potential of large-scale searches for close-in giant planets around T Tauri stars.



قيم البحث

اقرأ أيضاً

We report the results of an extended spectropolarimetric and photometric monitoring of the weak-line T Tauri star TAP 26, carried out within the MaTYSSE programme with the ESPaDOnS spectropolarimeter at the 3.6 m Canada-France-Hawaii Telescope. Apply ing Zeeman-Doppler Imaging to our observations, concentrating in 2015 November and 2016 January and spanning 72 d in total, 16 d in 2015 November and 13 d in 2016 January, we reconstruct surface brightness and magnetic field maps for both epochs and demonstrate that both distributions exhibit temporal evolution not explained by differential rotation alone. We report the detection of a hot Jupiter (hJ) around TAP 26 using three different methods, two using Zeeman-Doppler Imaging (ZDI) and one Gaussian-Process Regression (GPR), with a false-alarm probability smaller than 6.10^-4. However, as a result of the aliasing related to the observing window, the orbital period cannot be uniquely determined; the orbital period with highest likelihood is 10.79 +/- 0.14 d followed by 8.99 +/- 0.09 d. Assuming the most likely period, and that the planet orbits in the stellar equatorial plane, we obtain that the planet has a minimum mass M.sin(i) of 1.66 +/- 0.31 M_Jup and orbits at 0.0968 +/- 0.0032 au from its host star. This new detection suggests that disc type II migration is efficient at generating newborn hJs, and that hJs may be more frequent around young T Tauri stars than around mature stars (or that the MaTYSSE sample is biased towards hJ-hosting stars).
113 - JF Donati , E Hebrard , G Hussain 2015
We report results of a spectropolarimetric and photometric monitoring of the weak-line T Tauri stars (wTTSs) V819 Tau and V830 Tau within the MaTYSSE programme, involving the ESPaDOnS spectropolarimeter at the Canada-France-Hawaii Telescope. At ~3 My r, both stars dissipated their discs recently and are interesting objects for probing star and planet formation. Profile distortions and Zeeman signatures are detected in the unpolarized and circularly-polarized lines, whose rotational modulation we modelled using tomographic imaging, yielding brightness and magnetic maps for both stars. We find that the large-scale magnetic fields of V819 Tau and V830 Tau are mostly poloidal and can be approximated at large radii by 350-400 G dipoles tilted at ~30 degrees to the rotation axis. They are significantly weaker than the field of GQ Lup, an accreting classical T Tauri star (cTTS) with similar mass and age which can be used to compare the magnetic properties of wTTSs and cTTSs. The reconstructed brightness maps of both stars include cool spots and warm plages. Surface differential rotation is small, typically ~4.4x smaller than on the Sun, in agreement with previous results on wTTSs. Using our Doppler images to model the activity jitter and filter it out from the radial velocity (RV) curves, we obtain RV residuals with dispersions of 0.033 and 0.104 km/s for V819 Tau and V830 Tau respectively. RV residuals suggest that a hot Jupiter may be orbiting V830 Tau, though additional data are needed to confirm this preliminary result. We find no evidence for close-in giant planet around V819 Tau.
We present the discovery of two extended $sim$0.12 mag dimming events of the weak-lined T-Tauri star V1334. The start of the first event was missed but came to an end in late 2003, and the second began in February 2009, and continues as of November 2 016. Since the egress of the current event has not yet been observed, it suggests a period of $>$13 years if this event is periodic. Spectroscopic observations suggest the presence of a small inner disk, although the spectral energy distribution shows no infrared excess. We explore the possibility that the dimming events are caused by an orbiting body (e.g. a disk warp or dust trap), enhanced disk winds, hydrodynamical fluctuations of the inner disk, or a significant increase in the magnetic field flux at the surface of the star. We also find a $sim$0.32 day periodic photometric signal that persists throughout the 2009 dimming which appears to not be due to ellipsoidal variations from a close stellar companion. High precision photometric observations of V1334 Tau during K2 campaign 13, combined with simultaneous photometric and spectroscopic observations from the ground, will provide crucial information about the photometric variability and its origin.
79 - JF Donati , C Moutou , L Malo 2016
Hot Jupiters are giant Jupiter-like exoplanets that orbit 100x closer to their host stars than Jupiter does to the Sun. These planets presumably form in the outer part of the primordial disc from which both the central star and surrounding planets ar e born, then migrate inwards and yet avoid falling into their host star. It is however unclear whether this occurs early in the lives of hot Jupiters, when still embedded within protoplanetary discs, or later, once multiple planets are formed and interact. Although numerous hot Jupiters were detected around mature Sun-like stars, their existence has not yet been firmly demonstrated for young stars, whose magnetic activity is so intense that it overshadows the radial velocity signal that close-in giant planets can induce. Here we show that hot Jupiters around young stars can be revealed from extended sets of high-resolution spectra. Once filtered-out from the activity, radial velocities of V830 Tau derived from new data collected in late 2015 exhibit a sine wave of period 4.93 d and semi-amplitude 75 m/ s, detected with a false alarm probability <0.03%. We find that this signal is fully unrelated to the 2.741-d rotation period of V830 Tau and we attribute it to the presence of a 0.77 Jupiter mass planet orbiting at a distance of 0.057 au from the host star. Our result demonstrates that hot Jupiters can migrate inwards in <2 Myr, most likely as a result of planet-disc interactions, and thus yields strong support to the theory of giant planet migration in gaseous protoplanetary discs.
We present an analysis of spectropolarimetric observations of the low-mass weak-line T Tauri stars TWA 25 and TWA 7. The large-scale surface magnetic fields have been reconstructed for both stars using the technique of Zeeman Doppler imaging. Our sur face maps reveal predominantly toroidal and non-axisymmetric fields for both stars. These maps reinforce the wide range of surface magnetic fields that have been recovered, particularly in pre-main sequence stars that have stopped accreting from the (now depleted) central regions of their discs. We reconstruct the large scale surface brightness distributions for both stars, and use these reconstructions to filter out the activity-induced radial velocity jitter, reducing the RMS of the radial velocity variations from 495 m/s to 32 m/s for TWA 25, and from 127 m/s to 36 m/s for TWA 7, ruling out the presence of close-in giant planets for both stars. The TWA 7 radial velocities provide an example of a case where the activity-induced radial velocity variations mimic a Keplerian signal that is uncorrelated with the spectral activity indices. This shows the usefulness of longitudinal magnetic field measurements in identifying activity-induced radial velocity variations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا