ﻻ يوجد ملخص باللغة العربية
We calculate global (unified) wind models of main-sequence, giant, and supergiant O stars from our Galaxy. The models are calculated by solving hydrodynamic, kinetic equilibrium (also known as NLTE) and comoving-frame (CMF) radiative transfer equations from the (nearly) hydrostatic photosphere to the supersonic wind. For given stellar parameters, our models predict the photosphere and wind structure and in particular the wind mass-loss rates without any free parameters. Our predicted mass-loss rates are by a factor of 2--5 lower than the commonly used predictions. A possible cause of the difference is abandoning of the Sobolev approximation for the calculation of the radiative force, because our models agree with predictions of CMF NLTE radiative transfer codes. Our predicted mass-loss rates agree nicely with the mass-loss rates derived from observed near-infrared and X-ray line profiles and are slightly lower than mass-loss rates derived from combined UV and H$alpha$ diagnostics. The empirical mass-loss rate estimates corrected for clumping may therefore be reconciled with theoretical predictions in such a way that the average ratio between individual mass-loss rate estimates is not higher than about $ 1.6 $. On the other hand, our predictions are by factor of $ 4.7 $ lower than pure H$alpha$ mass-loss rate estimates and can be reconciled with these values only assuming a microclumping factor of at least eight.
Massive stars lose a significant fraction of mass during their evolution. However, the corresponding mass-loss rates are rather uncertain. To improve this, we calculated global line-driven wind models for Galactic B supergiants. Our models predict ra
We provide mass-loss rate predictions for O stars from Large and Small Magellanic Clouds. We calculate global (unified, hydrodynamic) model atmospheres of main sequence, giant, and supergiant stars for chemical composition corresponding to Magellanic
Small-scale inhomogeneities, or `clumping, in the winds of hot, massive stars are conventionally included in spectral analyses by assuming optically thin clumps. To reconcile investigations of different diagnostics using this microclumping technique,
We construct helium (He) star models with optically thick winds and compare them with the properties of Galactic Wolf-Rayet (WR) stars. Hydrostatic He-core solutions are connected smoothly to trans-sonic wind solutions that satisfy the regularity con
Fraction of hot stars posses strong magnetic fields that channel their radiatively driven outflows. We study the influence of line splitting in the magnetic field (Zeeman effect) on the wind properties. We use our own global wind code with radiative