ترغب بنشر مسار تعليمي؟ اضغط هنا

CMF models of hot star winds II. Reduction of O star wind mass-loss rates in global models

224   0   0.0 ( 0 )
 نشر من قبل Jiri Krticka
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We calculate global (unified) wind models of main-sequence, giant, and supergiant O stars from our Galaxy. The models are calculated by solving hydrodynamic, kinetic equilibrium (also known as NLTE) and comoving-frame (CMF) radiative transfer equations from the (nearly) hydrostatic photosphere to the supersonic wind. For given stellar parameters, our models predict the photosphere and wind structure and in particular the wind mass-loss rates without any free parameters. Our predicted mass-loss rates are by a factor of 2--5 lower than the commonly used predictions. A possible cause of the difference is abandoning of the Sobolev approximation for the calculation of the radiative force, because our models agree with predictions of CMF NLTE radiative transfer codes. Our predicted mass-loss rates agree nicely with the mass-loss rates derived from observed near-infrared and X-ray line profiles and are slightly lower than mass-loss rates derived from combined UV and H$alpha$ diagnostics. The empirical mass-loss rate estimates corrected for clumping may therefore be reconciled with theoretical predictions in such a way that the average ratio between individual mass-loss rate estimates is not higher than about $ 1.6 $. On the other hand, our predictions are by factor of $ 4.7 $ lower than pure H$alpha$ mass-loss rate estimates and can be reconciled with these values only assuming a microclumping factor of at least eight.

قيم البحث

اقرأ أيضاً

Massive stars lose a significant fraction of mass during their evolution. However, the corresponding mass-loss rates are rather uncertain. To improve this, we calculated global line-driven wind models for Galactic B supergiants. Our models predict ra dial wind structure directly from basic stellar parameters. The hydrodynamic structure of the flow is consistently determined from the photosphere in nearly hydrostatic equilibrium to supersonically expanding wind. The radiative force is derived from the solution of the radiative transfer equation in the comoving frame. We provide a simple formula that predicts theoretical mass-loss rates as a function of stellar luminosity and effective temperature. The mass-loss rate of B supergiants slightly decreases with temperature down to about 22.5 kK, where the region of recombination of Fe IV to Fe III starts to appear. In this region, which is about 5 kK wide, the mass-loss rate gradually increases by a factor of about 6. The increase of the mass-loss rate is associated with a gradual decrease of terminal velocities by a factor of about 2. We compared the predicted wind parameters with observations. While the observed wind terminal velocities are reasonably reproduced by the models, the situation with mass-loss rates is less clear. The mass-loss rates derived from observations that are uncorrected for clumping are by a factor of 3 to 9 higher than our predictions on cool and hot sides of the studied sample, respectively. These observations can be reconciled with theory assuming a temperature-dependent clumping factor. On the other hand, the mass-loss rate estimates that are not sensitive to clumping agree with our predictions much better. Our predictions are by a factor of about 10 lower than the values currently used in evolutionary models appealing for reconsideration of the role of winds in the stellar evolution.
218 - Jiri Krticka , Jiri Kubat 2017
We provide mass-loss rate predictions for O stars from Large and Small Magellanic Clouds. We calculate global (unified, hydrodynamic) model atmospheres of main sequence, giant, and supergiant stars for chemical composition corresponding to Magellanic Clouds. The models solve radiative transfer equation in comoving frame, kinetic equilibrium equations (also known as NLTE equations), and hydrodynamical equations from (quasi-)hydrostatic atmosphere to expanding stellar wind. The models allow us to predict wind density, velocity, and temperature (consequently also the terminal wind velocity and the mass-loss rate) just from basic global stellar parameters. As a result of their lower metallicity, the line radiative driving is weaker leading to lower wind mass-loss rates with respect to the Galactic stars. We provide a formula that fits the mass-loss rate predicted by our models as a function of stellar luminosity and metallicity. On average, the mass-loss rate scales with metallicity as $ dot Msim Z^{0.59}$. The predicted mass-loss rates are lower than mass-loss rates derived from H$alpha$ diagnostics and can be reconciled with observational results assuming clumping factor $C_text{c}=9$. On the other hand, the predicted mass-loss rates either agree or are slightly higher than the mass-loss rates derived from ultraviolet wind line profiles. The calculated ion{P}{v} ionization fractions also agree with values derived from observations for LMC stars with $T_text{eff}leq40,000,$K. Taken together, our theoretical predictions provide reasonable models with consistent mass-loss rate determination, which can be used for quantitative study of stars from Magellanic Clouds.
Small-scale inhomogeneities, or `clumping, in the winds of hot, massive stars are conventionally included in spectral analyses by assuming optically thin clumps. To reconcile investigations of different diagnostics using this microclumping technique, very low mass-loss rates must be invoked for O stars. Recently it has been suggested that by using the microclumping approximation one may actually drastically underestimate the mass-loss rates. Here we demonstrate this, present a new, improved description of clumpy winds, and show how corresponding models, in a combined UV and optical analysis, can alleviate discrepancies between previously derived rates and those predicted by the line-driven wind theory. Furthermore, we show that the structures obtained in time-dependent, radiation-hydrodynamic simulations of the intrinsic line-driven instability of such winds, which are the basis to our current understanding of clumping, in their present-day form seem unable to provide a fully self-consistent, simultaneous fit to both UV and optical lines. The reasons for this are discussed.
We construct helium (He) star models with optically thick winds and compare them with the properties of Galactic Wolf-Rayet (WR) stars. Hydrostatic He-core solutions are connected smoothly to trans-sonic wind solutions that satisfy the regularity con ditions at the sonic point. Velocity structures in the supersonic parts are assumed by a simple beta-type law. By constructing a center-to-surface structure, a mass-loss rate can be obtained as an eigenvalue of the equations. Sonic points appear at temperatures ~ 1.8e5 - 2.8e5 K below the Fe-group opacity peak, where the radiation force becomes comparable to the local gravity. Photospheres are located at radii 3-10 times larger than sonic points. The obtained mass-loss rates are comparable to those of WR stars. Our mass-loss rate - luminosity relation agrees well with the relation recently obtained by Graefener et al. (2017). Photospheric temperatures of WR stars tend to be cooler than our predictions. We discuss the effects of stellar evolution, detailed radiation transfer, and wind clumping, which are ignored in this paper.
114 - J. Krticka 2018
Fraction of hot stars posses strong magnetic fields that channel their radiatively driven outflows. We study the influence of line splitting in the magnetic field (Zeeman effect) on the wind properties. We use our own global wind code with radiative transfer in the comoving frame to understand the influence of the Zeeman splitting on the line force. We show that the Zeeman splitting has a negligible influence on the line force for magnetic fields that are weaker than about 100~kG. This means that the wind mass-loss rates and terminal velocities are not affected by the magnetic line splitting for magnetic fields as are typically found on the surface of nondegenerate stars. Neither have we found any strong flux variability that would be due to the magnetically split line blanketing.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا