ﻻ يوجد ملخص باللغة العربية
In this paper we propose a generalization of deep neural networks called deep function machines (DFMs). DFMs act on vector spaces of arbitrary (possibly infinite) dimension and we show that a family of DFMs are invariant to the dimension of input data; that is, the parameterization of the model does not directly hinge on the quality of the input (eg. high resolution images). Using this generalization we provide a new theory of universal approximation of bounded non-linear operators between function spaces. We then suggest that DFMs provide an expressive framework for designing new neural network layer types with topological considerations in mind. Finally, we introduce a novel architecture, RippLeNet, for resolution invariant computer vision, which empirically achieves state of the art invariance.
Deep neural networks (DNNs) have achieved unprecedented performance on a wide range of complex tasks, rapidly outpacing our understanding of the nature of their solutions. This has caused a recent surge of interest in methods for rendering modern neu
In this paper, we propose an adaptive pruning method. This method can cut off the channel and layer adaptively. The proportion of the layer and the channel to be cut is learned adaptively. The pruning method proposed in this paper can reduce half of
We investigate the topics of sensitivity and robustness in feedforward and convolutional neural networks. Combining energy landscape techniques developed in computational chemistry with tools drawn from formal methods, we produce empirical evidence i
Deep neural networks have achieved state-of-the-art results in various vision and/or language tasks. Despite the use of large training datasets, most models are trained by iterating over single input-output pairs, discarding the remaining examples fo
In this paper, we propose a novel adaptive kernel for the radial basis function (RBF) neural networks. The proposed kernel adaptively fuses the Euclidean and cosine distance measures to exploit the reciprocating properties of the two. The proposed fr