ترغب بنشر مسار تعليمي؟ اضغط هنا

GD358: three decades of observations for the in-depth asteroseismology of a DBV star

377   0   0.0 ( 0 )
 نشر من قبل Agnes Kim
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on the analysis of 34 years of photometric observations of the pulsating helium atmosphere white dwarf GD358. The complete data set includes archival data from 1982-2006, and 1195.2 hours of new observations from 2007- 2016. From this data set, we extract 15 frequencies representing g-mode pulsation modes, adding 4 modes to the 11 modes known previously. We present evidence that these 15 modes are ell = 1 modes, 13 of which belong to a consecutive sequence in radial overtone k. We perform a detailed asteroseismic analysis using models that include parameterized, complex carbon and oxygen core composition profiles to fit the periods. Recent spectroscopic analyses place GD358 near the red edge of the DBV instability strip, at 24,000 plus or minus 500 K and a log g of 7.8 plus or minus 0.08 dex. The surface gravity translates to a mass range of 0.455 to 0.540 solar masses. Our best fit model has a temperature of 23,650 K and a mass of 0.5706 solar masses. That is slightly more massive than suggested by most the recent spectroscopy. We find a pure helium layer mass of 10^-5.50, consistent with the result of previous studies and the outward diffusion of helium over time.



قيم البحث

اقرأ أيضاً

We report on the analysis of 436.1 hrs of nearly continuous high-speed photometry on the pulsating DB white dwarf GD358 acquired with the Whole Earth Telescope (WET) during the 2006 international observing run, designated XCOV25. The Fourier transfor m (FT) of the light curve contains power between 1000 to 4000 microHz, with the dominant peak at 1234 microHz. We find 27 independent frequencies distributed in 10 modes, as well as numerous combination frequencies. Our discussion focuses on a new asteroseismological analysis of GD358, incorporating the 2006 data set and drawing on 24 years of archival observations. Our results reveal that, while the general frequency locations of the identified modes are consistent throughout the years, the multiplet structure is complex and cannot be interpreted simply as l=1 modes in the limit of slow rotation. The high k multiplets exhibit significant variability in structure, amplitude and frequency. Any identification of the m components for the high k multiplets is highly suspect. The k=9 and 8 modes typically do show triplet structure more consistent with theoretical expectations. The frequencies and amplitudes exhibit some variability, but much less than the high k modes. Analysis of the k=9 and 8 multiplet splittings from 1990 to 2008 reveal a long-term change in multiplet splittings coinciding with the 1996 sforzando event, where GD358 dramatically altered its pulsation characteristics on a timescale of hours. We explore potential implications, including the possible connections between convection and/or magnetic fields and pulsations. We suggest future investigations, including theoretical investigations of the relationship between magnetic fields, pulsation, growth rates, and convection.
We present an asteroseismic analysis of the helium atmosphere white dwarf (a DBV) recently found in the field of view of the Kepler satellite. We analyze the 5-mode pulsation spectrum that was produced based on one month of high cadence Kepler data. The pulsational characteristics of the star and the asteroseismic analysis strongly suggest that the star is hotter (29200 K) than the 24900 K suggested by model fits to the low S/N survey spectrum of the object. This result has profound and exciting implications for tests of the Standard Model of particle physics. Hot DBVs are expected to lose over half of their energy through the emission of plasmon neutrinos. Continuous monitoring of the star with the Kepler satellite over the course of 3 to 5 years is not only very likely to yield more modes to help constrain the asteroseismic fits, but also allow us to obtain a rate of change of any stable mode and therefore measure the emission of plasmon neutrinos.
89 - R.M. Duan , W. Zong , J.-N. Fu 2021
We present analysis of a new pulsating helium-atmosphere (DB) white dwarf, EPIC~228782059, discovered from 55.1~days of {em K2} photometry. The long duration, high quality light curves reveal 11 independent dipole and quadruple modes, from which we d erive a rotational period of $34.1 pm 0.4$~hr for the star. An optimal model is obtained from a series of grids constructed using the White Dwarf Evolution Code, which returns $M_{*} = 0.685 pm 0.003 M_{odot}$, $T_{rm{eff}}= 21{,}910 pm 23$,K and $log g = 8.14 pm0.01$,dex. These values are comparable to those derived from spectroscopy by Koester & Kepler ($20{,}860 pm 160$,K and $7.94 pm0.03$,dex). If these values are confirmed or better constrained by other independent works, it would make EPIC~228782059 one of the coolest pulsating DB white dwarf star known, and would be helpful to test different physical treatments of convection, and to further investigate the theoretical instability strip of DB white dwarf stars.
Asteroseismology of white dwarf (WD) stars is a powerful tool that allows to reveal the hidden chemical structure of WD and infer details about their evolution by comparing the observed periods with those obtained from stellar models. A recent astero seismological study has reproduced the period spectrum of the helium rich pulsating WD KIC 08626021 with an unprecedented precision. The chemical structure derived from that analysis is notably different from that expected for a WD according to currently accepted formation channels, thus posing a challenge to the theory of stellar evolution. We explore the relevant micro- and macro-physics processes acting during the formation and evolution of KIC 08626021 that could lead to a chemical structure similar to that found through asteroseismology. We quantify to which extent is necessary to modify the physical processes that shapes the chemical structure, in order to reproduce the most important features of the asteroseismic model. We model the previous evolution of KIC 08626021 by exploring specific changes in the 12C+alpha reaction rate, screening processes, microscopic diffusion, as well as convective boundary mixing during core-He burning. We find that, in order to reproduce the core chemical profile derived for KIC 0862602, the 12C+alpha nuclear reaction rate has to be increased by a factor of $sim$ 10 during the helium-core burning, and reduced by a factor of $sim$ 1000 during the following helium-shell burning, as compared with the standard predictions for this rate. In addition, the main chemical structures derived for KIC 0862602 cannot be reconciled with our present knowledge of white dwarf formation. We find that within our current understanding of white dwarf formation and evolution, it is difficult to reproduce the most important asteroseismologically-derived features of the chemical structure of KIC 08626021.
Doppler-based planet surveys point to an increasing occurrence rate of giant planets with stellar mass. Such surveys rely on evolved stars for a sample of intermediate-mass stars (so-called retired A stars), which are more amenable to Doppler observa tions than their main-sequence progenitors. However, it has been hypothesised that the masses of subgiant and low-luminosity red-giant stars targeted by these surveys --- typically derived from a combination of spectroscopy and isochrone fitting --- may be systematically overestimated. Here, we test this hypothesis for the particular case of the exoplanet-host star HD 212771 using K2 asteroseismology. The benchmark asteroseismic mass ($1.45^{+0.10}_{-0.09}:text{M}_{odot}$) is significantly higher than the value reported in the discovery paper ($1.15pm0.08:text{M}_{odot}$), which has been used to inform the stellar mass-planet occurrence relation. This result, therefore, does not lend support to the above hypothesis. Implications for the fates of planetary systems are sensitively dependent on stellar mass. Based on the derived asteroseismic mass, we predict the post-main-sequence evolution of the Jovian planet orbiting HD 212771 under the effects of tidal forces and stellar mass loss.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا