ﻻ يوجد ملخص باللغة العربية
We report on the analysis of 34 years of photometric observations of the pulsating helium atmosphere white dwarf GD358. The complete data set includes archival data from 1982-2006, and 1195.2 hours of new observations from 2007- 2016. From this data set, we extract 15 frequencies representing g-mode pulsation modes, adding 4 modes to the 11 modes known previously. We present evidence that these 15 modes are ell = 1 modes, 13 of which belong to a consecutive sequence in radial overtone k. We perform a detailed asteroseismic analysis using models that include parameterized, complex carbon and oxygen core composition profiles to fit the periods. Recent spectroscopic analyses place GD358 near the red edge of the DBV instability strip, at 24,000 plus or minus 500 K and a log g of 7.8 plus or minus 0.08 dex. The surface gravity translates to a mass range of 0.455 to 0.540 solar masses. Our best fit model has a temperature of 23,650 K and a mass of 0.5706 solar masses. That is slightly more massive than suggested by most the recent spectroscopy. We find a pure helium layer mass of 10^-5.50, consistent with the result of previous studies and the outward diffusion of helium over time.
We report on the analysis of 436.1 hrs of nearly continuous high-speed photometry on the pulsating DB white dwarf GD358 acquired with the Whole Earth Telescope (WET) during the 2006 international observing run, designated XCOV25. The Fourier transfor
We present an asteroseismic analysis of the helium atmosphere white dwarf (a DBV) recently found in the field of view of the Kepler satellite. We analyze the 5-mode pulsation spectrum that was produced based on one month of high cadence Kepler data.
We present analysis of a new pulsating helium-atmosphere (DB) white dwarf, EPIC~228782059, discovered from 55.1~days of {em K2} photometry. The long duration, high quality light curves reveal 11 independent dipole and quadruple modes, from which we d
Asteroseismology of white dwarf (WD) stars is a powerful tool that allows to reveal the hidden chemical structure of WD and infer details about their evolution by comparing the observed periods with those obtained from stellar models. A recent astero
Doppler-based planet surveys point to an increasing occurrence rate of giant planets with stellar mass. Such surveys rely on evolved stars for a sample of intermediate-mass stars (so-called retired A stars), which are more amenable to Doppler observa