ﻻ يوجد ملخص باللغة العربية
Asteroseismology of white dwarf (WD) stars is a powerful tool that allows to reveal the hidden chemical structure of WD and infer details about their evolution by comparing the observed periods with those obtained from stellar models. A recent asteroseismological study has reproduced the period spectrum of the helium rich pulsating WD KIC 08626021 with an unprecedented precision. The chemical structure derived from that analysis is notably different from that expected for a WD according to currently accepted formation channels, thus posing a challenge to the theory of stellar evolution. We explore the relevant micro- and macro-physics processes acting during the formation and evolution of KIC 08626021 that could lead to a chemical structure similar to that found through asteroseismology. We quantify to which extent is necessary to modify the physical processes that shapes the chemical structure, in order to reproduce the most important features of the asteroseismic model. We model the previous evolution of KIC 08626021 by exploring specific changes in the 12C+alpha reaction rate, screening processes, microscopic diffusion, as well as convective boundary mixing during core-He burning. We find that, in order to reproduce the core chemical profile derived for KIC 0862602, the 12C+alpha nuclear reaction rate has to be increased by a factor of $sim$ 10 during the helium-core burning, and reduced by a factor of $sim$ 1000 during the following helium-shell burning, as compared with the standard predictions for this rate. In addition, the main chemical structures derived for KIC 0862602 cannot be reconciled with our present knowledge of white dwarf formation. We find that within our current understanding of white dwarf formation and evolution, it is difficult to reproduce the most important asteroseismologically-derived features of the chemical structure of KIC 08626021.
The Kepler spacecraft provides new opportunities to search for long term frequency and amplitude modulations of oscillation modes in pulsating stars. We ana- lyzed nearly two years of uninterrupted data obtained with this instrument on the DBV star K
Aims. We use the Kepler data accumulated on the pulsating DB white dwarf KIC 08626021 to explore in detail the stability of its oscillation modes, searching in particular for evidences of nonlinear behaviors. Methods. We analyse nearly two years of u
This paper summarizes the project work on asteroseismology at the ERASMUS+ GATE 2020 Summer school on space satellite data. The aim was to do a global asteroseismic analysis of KIC 5006817 and quantify its stellar properties using the high-quality, s
We report on the analysis of 34 years of photometric observations of the pulsating helium atmosphere white dwarf GD358. The complete data set includes archival data from 1982-2006, and 1195.2 hours of new observations from 2007- 2016. From this data
Ultraprecise space photometry enables us to reveal light variability even in stars that were previously deemed constant. A large group of such stars show variations that may be rotationally modulated. This type of light variability is of special inte