ترغب بنشر مسار تعليمي؟ اضغط هنا

Asteroseismology of the Kepler field DBV White Dwarf - Its a hot one!

70   0   0.0 ( 0 )
 نشر من قبل Agnes Kim
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present an asteroseismic analysis of the helium atmosphere white dwarf (a DBV) recently found in the field of view of the Kepler satellite. We analyze the 5-mode pulsation spectrum that was produced based on one month of high cadence Kepler data. The pulsational characteristics of the star and the asteroseismic analysis strongly suggest that the star is hotter (29200 K) than the 24900 K suggested by model fits to the low S/N survey spectrum of the object. This result has profound and exciting implications for tests of the Standard Model of particle physics. Hot DBVs are expected to lose over half of their energy through the emission of plasmon neutrinos. Continuous monitoring of the star with the Kepler satellite over the course of 3 to 5 years is not only very likely to yield more modes to help constrain the asteroseismic fits, but also allow us to obtain a rate of change of any stable mode and therefore measure the emission of plasmon neutrinos.

قيم البحث

اقرأ أيضاً

89 - R.M. Duan , W. Zong , J.-N. Fu 2021
We present analysis of a new pulsating helium-atmosphere (DB) white dwarf, EPIC~228782059, discovered from 55.1~days of {em K2} photometry. The long duration, high quality light curves reveal 11 independent dipole and quadruple modes, from which we d erive a rotational period of $34.1 pm 0.4$~hr for the star. An optimal model is obtained from a series of grids constructed using the White Dwarf Evolution Code, which returns $M_{*} = 0.685 pm 0.003 M_{odot}$, $T_{rm{eff}}= 21{,}910 pm 23$,K and $log g = 8.14 pm0.01$,dex. These values are comparable to those derived from spectroscopy by Koester & Kepler ($20{,}860 pm 160$,K and $7.94 pm0.03$,dex). If these values are confirmed or better constrained by other independent works, it would make EPIC~228782059 one of the coolest pulsating DB white dwarf star known, and would be helpful to test different physical treatments of convection, and to further investigate the theoretical instability strip of DB white dwarf stars.
112 - Rene P. Breton 2011
We present an analysis and interpretation of the Kepler binary system KOI 1224. This is the fourth binary found with Kepler that consists of a thermally bloated, hot white dwarf in a close orbit with a more or less normal star of spectral class A or F. As we show, KOI 1224 contains a white dwarf with Teff = 14400 +/- 1100 K, mass = 0.20 +/- 0.02 Msun, and radius = 0.103 +/- 0.004 Rsun, and an F-star companion of mass = 1.59 +/- 0.07 Msun that is somewhat beyond its terminal-age main sequence. The orbital period is quite short at 2.69802 days. The ingredients that are used in the analysis are the Kepler binary light curve, including the detection of the Doppler boosting effect; the NUV and FUV fluxes from the Galex images of this object; an estimate of the spectral type of the F-star companion; and evolutionary models of the companion designed to match its effective temperature and mean density. The light curve is modelled with a new code named Icarus which we describe in detail. Its features include the full treatment of orbital phase-resolved spectroscopy, Doppler boosting, irradiation effects and transits/eclipses, which are particularly suited to irradiated eclipsing binaries. We interpret the KOI 1224 system in terms of its likely evolutionary history. We infer that this type of system, containing a bloated hot white dwarf, is the direct descendant of an Algol-type binary. In spite of this basic understanding of the origin of KOI 1224, we discuss a number of problems associated with producing this type of system with this short of an short orbital period.
At present, a large number of pulsating white dwarf (WD) stars is being discovered either from Earth-based surveys such as the Sloan Digital Sky Survey, or through observations from space (e.g., the Kepler mission). The asteroseismological techniques allow us to infer details of internal chemical stratification, the total mass, and even the stellar rotation profile. In this paper, we first describe the basic properties of WD stars and their pulsations, as well as the different sub-types of these variables known so far. Subsequently, we describe some recent findings about pulsating low-mass WDs.
We present a new, better-constrained asteroseismic analysis of the helium-atmosphere (DB) white dwarf discovered in the field of view of the original Kepler mission. Observations obtained over the course of two years yield at least seven independent modes, two more than were found in the discovery paper for the object. With several triplets and doublets, we are able to fix the $ell$ and $rm{m}$ identification of several modes before performing the fitting, greatly reducing the number of assumptions we must make about mode identification. We find a very thin helium layer for this relatively hot DB, which adds evidence to the hypothesis that helium diffuses outward during DB cooling. At least a few of the modes appear to be stable on evolutionary timescales and could allow us to obtain a measurement of the rate of cooling with monitoring of the star over the course of the next few years with ground-based follow-up.
We present some of the results of a survey aimed at exploring the asteroseismological potential of the newly-discovered carbon-atmosphere white dwarfs. We show that, in certains regions of parameter space, carbon-atmosphere white dwarfs may drive low -order gravity modes. We demonstrate that our theoretical results are consistent with the recent exciting discovery of luminosity variations in SDSS J1426+5752 and some null results obtained by a team of scientists at McDonald Observatory. We also present follow-up photometric observations carried out by ourselves at the Mount Bigelow 1.6-m telescope using the new Mont4K camera. The results of follow-up spectroscopic observations at the MMT are also briefly reported, including the surprising discovery that SDSS J1426+5752 is not only a pulsating star but that it is also a magnetic white dwarf with a surface field near 1.2 MG. The discovery of $g$-mode pulsations in SDSS J1426+5752 is quite significant in itself as it opens a fourth asteroseismological window, after the GW Vir, V777 Her, and ZZ Ceti families, through which one may study white dwarfs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا