ترغب بنشر مسار تعليمي؟ اضغط هنا

Dead Time Compensation for High-Flux Ranging

346   0   0.0 ( 0 )
 نشر من قبل Joshua Rapp
 تاريخ النشر 2018
  مجال البحث هندسة إلكترونية
والبحث باللغة English




اسأل ChatGPT حول البحث

Dead time effects have been considered a major limitation for fast data acquisition in various time-correlated single photon counting applications, since a commonly adopted approach for dead time mitigation is to operate in the low-flux regime where dead time effects can be ignored. Through the application of lidar ranging, this work explores the empirical distribution of detection times in the presence of dead time and demonstrates that an accurate statistical model can result in reduced ranging error with shorter data acquisition time when operating in the high-flux regime. Specifically, we show that the empirical distribution of detection times converges to the stationary distribution of a Markov chain. Depth estimation can then be performed by passing the empirical distribution through a filter matched to the stationary distribution. Moreover, based on the Markov chain model, we formulate the recovery of arrival distribution from detection distribution as a nonlinear inverse problem and solve it via provably convergent mathematical optimization. By comparing per-detection Fisher information for depth estimation from high- and low-flux detection time distributions, we provide an analytical basis for possible improvement of ranging performance resulting from the presence of dead time. Finally, we demonstrate the effectiveness of our formulation and algorithm via simulations of lidar ranging.



قيم البحث

اقرأ أيضاً

In this paper, we focus on the problem of blind joint calibration of multiband transceivers and time-delay (TD) estimation of multipath channels. We show that this problem can be formulated as a particular case of covariance matching. Although this p roblem is severely ill-posed, prior information about radio-frequency chain distortions and multipath channel sparsity is used for regularization. This approach leads to a biconvex optimization problem, which is formulated as a rank-constrained linear system and solved by a simple group Lasso algorithm.Numerical experiments show that the proposed algorithm provides better calibration and higher resolution for TD estimation than current state-of-the-art methods.
The orbital angular momentum (OAM) of photons is a promising degree of freedom for high-dimensional quantum key distribution (QKD). However, effectively mitigating the adverse effects of atmospheric turbulence is a persistent challenge in OAM QKD sys tems operating over free-space communication channels. In contrast to previous works focusing on correcting static simulated turbulence, we investigate the performance of OAM QKD in real atmospheric turbulence with real-time adaptive optics (AO) correction. We show that, even our AO system provides a limited correction, it is possible to mitigate the errors induced by weak turbulence and establish a secure channel. The crosstalk induced by turbulence and the performance of AO systems is investigated in two configurations: a lab-scale link with controllable turbulence, and a 340 m long cross-campus link with dynamic atmospheric turbulence. Our experimental results suggest that an advanced AO system with fine beam tracking, reliable beam stabilization, precise wavefront sensing, and accurate wavefront correction is necessary to adequately correct turbulence-induced error. We also propose and demonstrate different solutions to improve the performance of OAM QKD with turbulence, which could enable the possibility of OAM encoding in strong turbulence.
Synchronization and ranging in internet of things (IoT) networks are challenging due to the narrowband nature of signals used for communication between IoT nodes. Recently, several estimators for range estimation using phase difference of arrival (PD oA) measurements of narrowband signals have been proposed. However, these estimators are based on data models which do not consider the impact of clock-skew on the range estimation. In this paper, clock-skew and range estimation are studied under a unified framework. We derive a novel and precise data model for PDoA measurements which incorporates the unknown clock-skew effects. We then formulate joint estimation of the clock-skew and range as a two-dimensional (2-D) frequency estimation problem of a single complex sinusoid. Furthermore, we propose: (i) a two-way communication protocol for collecting PDoA measurements and (ii) a weighted least squares (WLS) algorithm for joint estimation of clock-skew and range leveraging the shift invariance property of the measurement data. Finally, through numerical experiments, the performance of the proposed protocol and estimator is compared against the Cramer Rao lower bound demonstrating that the proposed estimator is asymptotically efficient.
Meeting the ever-growing information rate demands has become of utmost importance for optical communication systems. However, it has proven to be a challenging task due to the presence of Kerr effects, which have largely been regarded as a major bott leneck for enhancing the achievable information rates in modern optical communications. In this work, the optimisation and performance of digital nonlinearity compensation are discussed for maximising the achievable information rates in spectrally-efficient optical fibre communication systems. It is found that, for any given target information rate, there exists a trade-off between modulation format and compensated bandwidth to reduce the computational complexity requirement of digital nonlinearity compensation.
In this paper, the performance of adaptive turbo equalization for nonlinearity compensation (NLC) is investigated. A turbo equalization scheme is proposed where a recursive least-squares (RLS) algorithm is used as an adaptive channel estimator to tra ck the time-varying intersymbol interference (ISI) coefficients associated with inter-channel nonlinear interference (NLI) model. The estimated channel coefficients are used by a MIMO 2x2 soft-input soft-output (SISO) linear minimum mean square error (LMMSE) equalizer to compensate for the time-varying ISI. The SISO LMMSE equalizer and the SISO forward error correction (FEC) decoder exchange extrinsic information in every turbo iteration, allowing the receiver to improve the performance of the channel estimation and the equalization, achieving lower bit-error-rate (BER) values. The proposed scheme is investigated for polarization multiplexed 64QAM and 256QAM, although it applies to any proper modulation format. Extensive numerical results are presented. It is shown that the scheme allows up to 0.7 dB extra gain in effectively received signal-to-noise ratio (SNR) and up to 0.2 bits/symbol/pol in generalized mutual information (GMI), on top of the gain provided by single-channel digital backpropagation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا