ﻻ يوجد ملخص باللغة العربية
Dead time effects have been considered a major limitation for fast data acquisition in various time-correlated single photon counting applications, since a commonly adopted approach for dead time mitigation is to operate in the low-flux regime where dead time effects can be ignored. Through the application of lidar ranging, this work explores the empirical distribution of detection times in the presence of dead time and demonstrates that an accurate statistical model can result in reduced ranging error with shorter data acquisition time when operating in the high-flux regime. Specifically, we show that the empirical distribution of detection times converges to the stationary distribution of a Markov chain. Depth estimation can then be performed by passing the empirical distribution through a filter matched to the stationary distribution. Moreover, based on the Markov chain model, we formulate the recovery of arrival distribution from detection distribution as a nonlinear inverse problem and solve it via provably convergent mathematical optimization. By comparing per-detection Fisher information for depth estimation from high- and low-flux detection time distributions, we provide an analytical basis for possible improvement of ranging performance resulting from the presence of dead time. Finally, we demonstrate the effectiveness of our formulation and algorithm via simulations of lidar ranging.
In this paper, we focus on the problem of blind joint calibration of multiband transceivers and time-delay (TD) estimation of multipath channels. We show that this problem can be formulated as a particular case of covariance matching. Although this p
The orbital angular momentum (OAM) of photons is a promising degree of freedom for high-dimensional quantum key distribution (QKD). However, effectively mitigating the adverse effects of atmospheric turbulence is a persistent challenge in OAM QKD sys
Synchronization and ranging in internet of things (IoT) networks are challenging due to the narrowband nature of signals used for communication between IoT nodes. Recently, several estimators for range estimation using phase difference of arrival (PD
Meeting the ever-growing information rate demands has become of utmost importance for optical communication systems. However, it has proven to be a challenging task due to the presence of Kerr effects, which have largely been regarded as a major bott
In this paper, the performance of adaptive turbo equalization for nonlinearity compensation (NLC) is investigated. A turbo equalization scheme is proposed where a recursive least-squares (RLS) algorithm is used as an adaptive channel estimator to tra