ﻻ يوجد ملخص باللغة العربية
The orbital angular momentum (OAM) of photons is a promising degree of freedom for high-dimensional quantum key distribution (QKD). However, effectively mitigating the adverse effects of atmospheric turbulence is a persistent challenge in OAM QKD systems operating over free-space communication channels. In contrast to previous works focusing on correcting static simulated turbulence, we investigate the performance of OAM QKD in real atmospheric turbulence with real-time adaptive optics (AO) correction. We show that, even our AO system provides a limited correction, it is possible to mitigate the errors induced by weak turbulence and establish a secure channel. The crosstalk induced by turbulence and the performance of AO systems is investigated in two configurations: a lab-scale link with controllable turbulence, and a 340 m long cross-campus link with dynamic atmospheric turbulence. Our experimental results suggest that an advanced AO system with fine beam tracking, reliable beam stabilization, precise wavefront sensing, and accurate wavefront correction is necessary to adequately correct turbulence-induced error. We also propose and demonstrate different solutions to improve the performance of OAM QKD with turbulence, which could enable the possibility of OAM encoding in strong turbulence.
Sampling is classically performed by recording the amplitude of an input signal at given time instants; however, sampling and reconstructing a signal using multiple devices in parallel becomes a more difficult problem to solve when the devices have a
Dead time effects have been considered a major limitation for fast data acquisition in various time-correlated single photon counting applications, since a commonly adopted approach for dead time mitigation is to operate in the low-flux regime where
Free-space communication links are severely affected by atmospheric turbulence, which causes degradation in the transmitted signal. One of the most common solutions to overcome this is to exploit diversity. In this approach, information is sent in pa
In this paper, the bit error rate (BER) performance of spatial modulation (SM) systems is investigated both theoretically and by simulation in a non-stationary Kronecker-based massive multiple-input-multiple-output (MIMO) channel model in multi-user
Meeting the ever-growing information rate demands has become of utmost importance for optical communication systems. However, it has proven to be a challenging task due to the presence of Kerr effects, which have largely been regarded as a major bott