ﻻ يوجد ملخص باللغة العربية
In this paper, we focus on the problem of blind joint calibration of multiband transceivers and time-delay (TD) estimation of multipath channels. We show that this problem can be formulated as a particular case of covariance matching. Although this problem is severely ill-posed, prior information about radio-frequency chain distortions and multipath channel sparsity is used for regularization. This approach leads to a biconvex optimization problem, which is formulated as a rank-constrained linear system and solved by a simple group Lasso algorithm.Numerical experiments show that the proposed algorithm provides better calibration and higher resolution for TD estimation than current state-of-the-art methods.
The multipath radio channel is considered to have a non-bandlimited channel impulse response. Therefore, it is challenging to achieve high resolution time-delay (TD) estimation of multipath components (MPCs) from bandlimited observations of communica
In this paper we propose a novel millimeter wave (mmW) multiple access method that exploits unique frequency dependent beamforming capabilities of True Time Delay (TTD) array architecture. The proposed protocol combines a contentionbased grant-free a
Unmanned aerial vehicle (UAV) swarm has emerged as a promising novel paradigm to achieve better coverage and higher capacity for future wireless network by exploiting the more favorable line-of-sight (LoS) propagation. To reap the potential gains of
In this work, a neural network based terramechanics model and terrain estimator are presented with an outlook for optimal control applications such as model predictive control. Recognizing the limitations of the state-of-the-art terramechanics models
With the explosively increasing demands on the network capacity, throughput and number of connected wireless devices, massive connectivity is an urgent problem for the next generation wireless communications. In this paper, we propose a grant-free ac