ﻻ يوجد ملخص باللغة العربية
Qudits, with their state space of dimension d > 2, open fascinating experimental prospects. The quantum properties of their states provide new potentialities for quantum information, quantum contextuality, expressions of geometric phases, facets of quantum entanglement and many other foundational aspects of the quantum world, which are unapproachable with qubits. We here experimentally investigate the quantum dynamics of a qudit (d = 4) that consists of a single 3/2 nuclear spin embedded in a molecular magnet transistor geometry, coherently driven by a microwave electric field. We propose and implement three protocols based on a generalization of the Ramsey interferometry to a multilevel system. First, the standard Ramsey interference is used to measure the accumulation of geometric phases. Then, two distinct transitions of the nuclear spin are addressed to measure the phase of an iSWAP quantum gate. Finally, through a succession of two Hadamard gates, the coherence time of a 3-state superposition is measured.
We experimentally demonstrate the use of a single electronic spin to measure the quantum dynamics of distant individual nuclear spins from within a surrounding spin bath. Our technique exploits coherent control of the electron spin, allowing us to is
We show that [VO(TPP)] (vanadyl tetraphenylporphyrinate) is a promising system suitable to implement quantum computation algorithms based on encoding information in multi-level (qudit) units. Indeed, it embeds an electronic spin 1/2 coupled through h
We study quantum interference effects of a qubit whose energy levels are continuously modulated. The qubit is formed by an impurity electron spin in a silicon tunneling field-effect transistor, and it is read out by spin blockade in a double-dot conf
Magnetic fluctuations caused by the nuclear spins of a host crystal are often the leading source of decoherence for many types of solid-state spin qubit. In group-IV materials, the spin-bearing nuclei are sufficiently rare that it is possible to iden
The quantum coherence and gate fidelity of electron spin qubits in semiconductors is often limited by noise arising from coupling to a bath of nuclear spins. Isotopic enrichment of spin-zero nuclei such as $^{28}$Si has led to spectacular improvement