ﻻ يوجد ملخص باللغة العربية
We show that [VO(TPP)] (vanadyl tetraphenylporphyrinate) is a promising system suitable to implement quantum computation algorithms based on encoding information in multi-level (qudit) units. Indeed, it embeds an electronic spin 1/2 coupled through hyperfine interaction to a nuclear spin 7/2, both characterized by remarkable coherence. We demonstrate this by an extensive broadband nuclear magnetic resonance study, which allow us to characterize the nuclear spin-Hamiltonian and to measure the spin dephasing time as a function of the magnetic field. In addition, we combine targeted measurements and numerical simulations to show that nuclear spin transitions conditioned by the state of the electronic qubit can be individually addressed and coherently manipulated by resonant radio-frequency pulses, thanks to the remarkably long coherence times and the effective quadrupolar coupling induced by the strong hyperfine coupling. This approach may open new perspectives for developing new molecular qubit-qudit systems.
We demonstrate that the [Yb(trensal)] molecule is a prototypical coupled electronic qubit-nuclear qudit system. The combination of noise-resilient nuclear degrees of freedom and large reduction of nutation time induced by electron-nuclear mixing enab
Controlled dephasing of electrons, via which path detection, involves, in general, coupling a coherent system to a current driven noise source. However, here, we present a case in which a nearly isolated electron puddle at thermal equilibrium strongl
Magnetic fluctuations caused by the nuclear spins of a host crystal are often the leading source of decoherence for many types of solid-state spin qubit. In group-IV materials, the spin-bearing nuclei are sufficiently rare that it is possible to iden
Qudits, with their state space of dimension d > 2, open fascinating experimental prospects. The quantum properties of their states provide new potentialities for quantum information, quantum contextuality, expressions of geometric phases, facets of q
In this work we demonstrate theoretically how to use external laser field to control the population inversion of a single quantum dot exciton qubit in a nanocavity. We consider the Jaynes-Cummings model to describe the system, and the incoherent loss