ترغب بنشر مسار تعليمي؟ اضغط هنا

Data Motif-based Proxy Benchmarks for Big Data and AI Workloads

238   0   0.0 ( 0 )
 نشر من قبل Wanling Gao
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

For the architecture community, reasonable simulation time is a strong requirement in addition to performance data accuracy. However, emerging big data and AI workloads are too huge at binary size level and prohibitively expensive to run on cycle-accurate simulators. The concept of data motif, which is identified as a class of units of computation performed on initial or intermediate data, is the first step towards building proxy benchmark to mimic the real-world big data and AI workloads. However, there is no practical way to construct a proxy benchmark based on the data motifs to help simulation-based research. In this paper, we embark on a study to bridge the gap between data motif and a practical proxy benchmark. We propose a data motif-based proxy benchmark generating methodology by means of machine learning method, which combine data motifs with different weights to mimic the big data and AI workloads. Furthermore, we implement various data motifs using light-weight stacks and apply the methodology to five real-world workloads to construct a suite of proxy benchmarks, considering the data types, patterns, and distributions. The evaluation results show that our proxy benchmarks shorten the execution time by 100s times on real systems while maintaining the average system and micro-architecture performance data accuracy above 90%, even changing the input data sets or cluster configurations. Moreover, the generated proxy benchmarks reflect consistent performance trends across different architectures. To facilitate the community, we will release the proxy benchmarks on the project homepage http://prof.ict.ac.cn/BigDataBench.



قيم البحث

اقرأ أيضاً

The complexity and diversity of big data and AI workloads make understanding them difficult and challenging. This paper proposes a new approach to modelling and characterizing big data and AI workloads. We consider each big data and AI workload as a pipeline of one or more classes of units of computation performed on different initial or intermediate data inputs. Each class of unit of computation captures the common requirements while being reasonably divorced from individual implementations, and hence we call it a data motif. For the first time, among a wide variety of big data and AI workloads, we identify eight data motifs that take up most of the run time of those workloads, including Matrix, Sampling, Logic, Transform, Set, Graph, Sort and Statistic. We implement the eight data motifs on different software stacks as the micro benchmarks of an open-source big data and AI benchmark suite ---BigDataBench 4.0 (publicly available from http://prof.ict.ac.cn/BigDataBench), and perform comprehensive characterization of those data motifs from perspective of data sizes, types, sources, and patterns as a lens towards fully understanding big data and AI workloads. We believe the eight data motifs are promising abstractions and tools for not only big data and AI benchmarking, but also domain-specific hardware and software co-design.
Big data benchmark suites must include a diversity of data and workloads to be useful in fairly evaluating big data systems and architectures. However, using truly comprehensive benchmarks poses great challenges for the architecture community. First, we need to thoroughly understand the behaviors of a variety of workloads. Second, our usual simulation-based research methods become prohibitively expensive for big data. As big data is an emerging field, more and more software stacks are being proposed to facilitate the development of big data applications, which aggravates hese challenges. In this paper, we first use Principle Component Analysis (PCA) to identify the most important characteristics from 45 metrics to characterize big data workloads from BigDataBench, a comprehensive big data benchmark suite. Second, we apply a clustering technique to the principle components obtained from the PCA to investigate the similarity among big data workloads, and we verify the importance of including different software stacks for big data benchmarking. Third, we select seven representative big data workloads by removing redundant ones and release the BigDataBench simulation version, which is publicly available from http://prof.ict.ac.cn/BigDataBench/simulatorversion/.
181 - Qi Zhang , Ling Liu , Calton Pu 2018
Container technique is gaining increasing attention in recent years and has become an alternative to traditional virtual machines. Some of the primary motivations for the enterprise to adopt the container technology include its convenience to encapsu late and deploy applications, lightweight operations, as well as efficiency and flexibility in resources sharing. However, there still lacks an in-depth and systematic comparison study on how big data applications, such as Spark jobs, perform between a container environment and a virtual machine environment. In this paper, by running various Spark applications with different configurations, we evaluate the two environments from many interesting aspects, such as how convenient the execution environment can be set up, what are makespans of different workloads running in each setup, how efficient the hardware resources, such as CPU and memory, are utilized, and how well each environment can scale. The results show that compared with virtual machines, containers provide a more easy-to-deploy and scalable environment for big data workloads. The research work in this paper can help practitioners and researchers to make more informed decisions on tuning their cloud environment and configuring the big data applications, so as to achieve better performance and higher resources utilization.
Several fundamental changes in technology indicate domain-specific hardware and software co-design is the only path left. In this context, architecture, system, data management, and machine learning communities pay greater attention to innovative big data and AI algorithms, architecture, and systems. Unfortunately, complexity, diversity, frequently-changed workloads, and rapid evolution of big data and AI systems raise great challenges. First, the traditional benchmarking methodology that creates a new benchmark or proxy for every possible workload is not scalable, or even impossible for Big Data and AI benchmarking. Second, it is prohibitively expensive to tailor the architecture to characteristics of one or more application or even a domain of applications. We consider each big data and AI workload as a pipeline of one or more classes of units of computation performed on different initial or intermediate data inputs, each class of which we call a data motif. On the basis of our previous work that identifies eight data motifs taking up most of the run time of a wide variety of big data and AI workloads, we propose a scalable benchmarking methodology that uses the combination of one or more data motifs---to represent diversity of big data and AI workloads. Following this methodology, we present a unified big data and AI benchmark suite---BigDataBench 4.0, publicly available from~url{http://prof.ict.ac.cn/BigDataBench}. This unified benchmark suite sheds new light on domain-specific hardware and software co-design: tailoring the system and architecture to characteristics of the unified eight data motifs other than one or more application case by case. Also, for the first time, we comprehensively characterize the CPU pipeline efficiency using the benchmarks of seven workload types in BigDataBench 4.0.
Big data benchmarking is particularly important and provides applicable yardsticks for evaluating booming big data systems. However, wide coverage and great complexity of big data computing impose big challenges on big data benchmarking. How can we c onstruct a benchmark suite using a minimum set of units of computation to represent diversity of big data analytics workloads? Big data dwarfs are abstractions of extracting frequently appearing operations in big data computing. One dwarf represents one unit of computation, and big data workloads are decomposed into one or more dwarfs. Furthermore, dwarfs workloads rather than vast real workloads are more cost-efficient and representative to evaluate big data systems. In this paper, we extensively investigate six most important or emerging application domains i.e. search engine, social network, e-commerce, multimedia, bioinformatics and astronomy. After analyzing forty representative algorithms, we single out eight dwarfs workloads in big data analytics other than OLAP, which are linear algebra, sampling, logic operations, transform operations, set operations, graph operations, statistic operations and sort.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا