ترغب بنشر مسار تعليمي؟ اضغط هنا

BigDataBench: A Scalable and Unified Big Data and AI Benchmark Suite

141   0   0.0 ( 0 )
 نشر من قبل Wanling Gao
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Several fundamental changes in technology indicate domain-specific hardware and software co-design is the only path left. In this context, architecture, system, data management, and machine learning communities pay greater attention to innovative big data and AI algorithms, architecture, and systems. Unfortunately, complexity, diversity, frequently-changed workloads, and rapid evolution of big data and AI systems raise great challenges. First, the traditional benchmarking methodology that creates a new benchmark or proxy for every possible workload is not scalable, or even impossible for Big Data and AI benchmarking. Second, it is prohibitively expensive to tailor the architecture to characteristics of one or more application or even a domain of applications. We consider each big data and AI workload as a pipeline of one or more classes of units of computation performed on different initial or intermediate data inputs, each class of which we call a data motif. On the basis of our previous work that identifies eight data motifs taking up most of the run time of a wide variety of big data and AI workloads, we propose a scalable benchmarking methodology that uses the combination of one or more data motifs---to represent diversity of big data and AI workloads. Following this methodology, we present a unified big data and AI benchmark suite---BigDataBench 4.0, publicly available from~url{http://prof.ict.ac.cn/BigDataBench}. This unified benchmark suite sheds new light on domain-specific hardware and software co-design: tailoring the system and architecture to characteristics of the unified eight data motifs other than one or more application case by case. Also, for the first time, we comprehensively characterize the CPU pipeline efficiency using the benchmarks of seven workload types in BigDataBench 4.0.

قيم البحث

اقرأ أيضاً

Data movement between the CPU and main memory is a first-order obstacle against improving performance, scalability, and energy efficiency in modern systems. Computer systems employ a range of techniques to reduce overheads tied to data movement, span ning from traditional mechanisms (e.g., deep multi-level cache hierarchies, aggressive hardware prefetchers) to emerging techniques such as Near-Data Processing (NDP), where some computation is moved close to memory. Our goal is to methodically identify potential sources of data movement over a broad set of applications and to comprehensively compare traditional compute-centric data movement mitigation techniques to more memory-centric techniques, thereby developing a rigorous understanding of the best techniques to mitigate each source of data movement. With this goal in mind, we perform the first large-scale characterization of a wide variety of applications, across a wide range of application domains, to identify fundamental program properties that lead to data movement to/from main memory. We develop the first systematic methodology to classify applications based on the sources contributing to data movement bottlenecks. From our large-scale characterization of 77K functions across 345 applications, we select 144 functions to form the first open-source benchmark suite (DAMOV) for main memory data movement studies. We select a diverse range of functions that (1) represent different types of data movement bottlenecks, and (2) come from a wide range of application domains. Using NDP as a case study, we identify new insights about the different data movement bottlenecks and use these insights to determine the most suitable data movement mitigation mechanism for a particular application. We open-source DAMOV and the complete source code for our new characterization methodology at https://github.com/CMU-SAFARI/DAMOV.
The complexity and diversity of big data and AI workloads make understanding them difficult and challenging. This paper proposes a new approach to modelling and characterizing big data and AI workloads. We consider each big data and AI workload as a pipeline of one or more classes of units of computation performed on different initial or intermediate data inputs. Each class of unit of computation captures the common requirements while being reasonably divorced from individual implementations, and hence we call it a data motif. For the first time, among a wide variety of big data and AI workloads, we identify eight data motifs that take up most of the run time of those workloads, including Matrix, Sampling, Logic, Transform, Set, Graph, Sort and Statistic. We implement the eight data motifs on different software stacks as the micro benchmarks of an open-source big data and AI benchmark suite ---BigDataBench 4.0 (publicly available from http://prof.ict.ac.cn/BigDataBench), and perform comprehensive characterization of those data motifs from perspective of data sizes, types, sources, and patterns as a lens towards fully understanding big data and AI workloads. We believe the eight data motifs are promising abstractions and tools for not only big data and AI benchmarking, but also domain-specific hardware and software co-design.
70 - Wanling Gao , Fei Tang , Lei Wang 2019
Todays Internet Services are undergoing fundamental changes and shifting to an intelligent computing era where AI is widely employed to augment services. In this context, many innovative AI algorithms, systems, and architectures are proposed, and thu s the importance of benchmarking and evaluating them rises. However, modern Internet services adopt a microservice-based architecture and consist of various modules. The diversity of these modules and complexity of execution paths, the massive scale and complex hierarchy of datacenter infrastructure, the confidential issues of data sets and workloads pose great challenges to benchmarking. In this paper, we present the first industry-standard Internet service AI benchmark suite---AIBench with seventeen industry partners, including several top Internet service providers. AIBench provides a highly extensible, configurable, and flexible benchmark framework that contains loosely coupled modules. We identify sixteen prominent AI problem domains like learning to rank, each of which forms an AI component benchmark, from three most important Internet service domains: search engine, social network, and e-commerce, which is by far the most comprehensive AI benchmarking effort. On the basis of the AIBench framework, abstracting the real-world data sets and workloads from one of the top e-commerce providers, we design and implement the first end-to-end Internet service AI benchmark, which contains the primary modules in the critical paths of an industry scale application and is scalable to deploy on different cluster scales. The specifications, source code, and performance numbers are publicly available from the benchmark council web site http://www.benchcouncil.org/AIBench/index.html.
For the architecture community, reasonable simulation time is a strong requirement in addition to performance data accuracy. However, emerging big data and AI workloads are too huge at binary size level and prohibitively expensive to run on cycle-acc urate simulators. The concept of data motif, which is identified as a class of units of computation performed on initial or intermediate data, is the first step towards building proxy benchmark to mimic the real-world big data and AI workloads. However, there is no practical way to construct a proxy benchmark based on the data motifs to help simulation-based research. In this paper, we embark on a study to bridge the gap between data motif and a practical proxy benchmark. We propose a data motif-based proxy benchmark generating methodology by means of machine learning method, which combine data motifs with different weights to mimic the big data and AI workloads. Furthermore, we implement various data motifs using light-weight stacks and apply the methodology to five real-world workloads to construct a suite of proxy benchmarks, considering the data types, patterns, and distributions. The evaluation results show that our proxy benchmarks shorten the execution time by 100s times on real systems while maintaining the average system and micro-architecture performance data accuracy above 90%, even changing the input data sets or cluster configurations. Moreover, the generated proxy benchmarks reflect consistent performance trends across different architectures. To facilitate the community, we will release the proxy benchmarks on the project homepage http://prof.ict.ac.cn/BigDataBench.
127 - Yuankun Fu , Fengguang Song 2020
This chapter introduces the state-of-the-art in the emerging area of combining High Performance Computing (HPC) with Big Data Analysis. To understand the new area, the chapter first surveys the existing approaches to integrating HPC with Big Data. Ne xt, the chapter introduces several optimization solutions that focus on how to minimize the data transfer time from computation-intensive applications to analysis-intensive applications as well as minimizing the end-to-end time-to-solution. The solutions utilize SDN to adaptively use both high speed interconnect network and high performance parallel file systems to optimize the application performance. A computational framework called DataBroker is designed and developed to enable a tight integration of HPC with data analysis. Multiple types of experiments have been conducted to show different performance issues in both message passing and parallel file systems and to verify the effectiveness of the proposed research approaches.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا