ﻻ يوجد ملخص باللغة العربية
Big data benchmark suites must include a diversity of data and workloads to be useful in fairly evaluating big data systems and architectures. However, using truly comprehensive benchmarks poses great challenges for the architecture community. First, we need to thoroughly understand the behaviors of a variety of workloads. Second, our usual simulation-based research methods become prohibitively expensive for big data. As big data is an emerging field, more and more software stacks are being proposed to facilitate the development of big data applications, which aggravates hese challenges. In this paper, we first use Principle Component Analysis (PCA) to identify the most important characteristics from 45 metrics to characterize big data workloads from BigDataBench, a comprehensive big data benchmark suite. Second, we apply a clustering technique to the principle components obtained from the PCA to investigate the similarity among big data workloads, and we verify the importance of including different software stacks for big data benchmarking. Third, we select seven representative big data workloads by removing redundant ones and release the BigDataBench simulation version, which is publicly available from http://prof.ict.ac.cn/BigDataBench/simulatorversion/.
Big data benchmarking is particularly important and provides applicable yardsticks for evaluating booming big data systems. However, wide coverage and great complexity of big data computing impose big challenges on big data benchmarking. How can we c
For the architecture community, reasonable simulation time is a strong requirement in addition to performance data accuracy. However, emerging big data and AI workloads are too huge at binary size level and prohibitively expensive to run on cycle-acc
The complexity and diversity of big data and AI workloads make understanding them difficult and challenging. This paper proposes a new approach to modelling and characterizing big data and AI workloads. We consider each big data and AI workload as a
This paper outlines BenchCouncils view on the challenges, rules, and vision of benchmarking modern workloads like Big Data, AI or machine learning, and Internet Services. We conclude the challenges of benchmarking modern workloads as FIDSS (Fragmente
Scientific discoveries are increasingly driven by analyzing large volumes of image data. Many new libraries and specialized database management systems (DBMSs) have emerged to support such tasks. It is unclear, however, how well these systems support