ترغب بنشر مسار تعليمي؟ اضغط هنا

Spectral Properties of Quantum Circulant Graphs

117   0   0.0 ( 0 )
 نشر من قبل Jonathan Harrison
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We introduce a new model for investigating spectral properties of quantum graphs, a quantum circulant graph. Circulant graphs are the Cayley graphs of cyclic groups. Quantum circulant graphs with standard vertex conditions maintain important features of the prototypical quantum star graph model. In particular, we show the spectrum is encoded in a secular equation with similar features. The secular equation of a quantum circulant graph takes two forms depending on whether the edge lengths respect the cyclic symmetry of the graph. When all the edge lengths are incommensurate, the spectral statistics correspond to those of random matrices from the Gaussian Orthogonal Ensemble according to the conjecture of Bohigas, Giannoni and Schmit. When the edge lengths respect the cyclic symmetry the spectrum decomposes into subspectra whose corresponding eigenfunctions transform according to irreducible representations of the cyclic group. We show that the subspectra exhibit intermediate spectral statistics and analyze the small and large parameter asymptotics of the two-point correlation function, applying techniques developed from star graphs. The particular form of the intermediate statistics differs from that seen for star graphs or Dirac rose graphs. As a further application, we show how the secular equations can be used to obtain spectral zeta functions using a contour integral technique. Results for the spectral determinant and vacuum energy of circulant graphs are obtained from the zeta functions.

قيم البحث

اقرأ أيضاً

119 - Maram Akila , Boris Gutkin 2015
The energy levels of a quantum graph with time reversal symmetry and unidirectional classical dynamics are doubly degenerate and obey the spectral statistics of the Gaussian Unitary Ensemble. These degeneracies, however, are lifted when the unidirect ionality is broken in one of the graphs vertices by a singular perturbation. Based on a Random Matrix model we derive an analytic expression for the nearest neighbour distribution between energy levels of such systems. As we demonstrate the result agrees excellently with the actual statistics for graphs with a uniform distribution of eigenfunctions. Yet, it exhibits quite substantial deviations for classes of graphs which show strong scarring.
We consider a 2D Schroedinger operator H0 with constant magnetic field, on a strip of finite width. The spectrum of H0 is absolutely continuous, and contains a discrete set of thresholds. We perturb H0 by an electric potential V which decays in a sui table sense at infinity, and study the spectral properties of the perturbed operator H = H0 + V . First, we establish a Mourre estimate, and as a corollary prove that the singular continuous spectrum of H is empty, and any compact subset of the complement of the threshold set may contain at most a finite set of eigenvalues of H, each of them having a finite multiplicity. Next, we introduce the Krein spectral shift function (SSF) for the operator pair (H,H0). We show that this SSF is bounded on any compact subset of the complement of the threshold set, and is continuous away from the threshold set and the eigenvalues of H. The main results of the article concern the asymptotic behaviour of the SSF at the thresholds, which is described in terms of the SSF for a pair of effective Hamiltonians.
161 - Peter J. Forrester 2021
$L$-ensembles are a class of determinantal point processes which can be viewed as a statistical mechanical systems in the grand canonical ensemble. Circulant $L$-ensembles are the subclass which are locally translationally invariant and furthermore s ubject to periodic boundary conditions. Existing theory can very simply be specialised to this setting, allowing for the derivation of formulas for the system pressure, and the correlation kernel, in the thermodynamic limit. For a one-dimensional domain, this is possible when the circulant matrix is both real symmetric, or complex Hermitian. The special case of the former having a Gaussian functional form for the entries is shown to correspond to free fermions at finite temperature, and be generalisable to higher dimensions. A special case of the latter is shown to be the statistical mechanical model introduced by Gaudin to interpolate between Poisson and unitary symmetry statistics in random matrix theory. It is shown in all cases that the compressibility sum rule for the two-point correlation is obeyed, and the small and large distance asymptotics of the latter are considered. Also, a conjecture relating the asymptotic form of the hole probability to the pressure is verified.
This article deals with the spectra of Laplacians of weighted graphs. In this context, two objects are of fundamental importance for the dynamics of complex networks: the second eigenvalue of such a spectrum (called algebraic connectivity) and its as sociated eigenvector, the so-called Fiedler vector. Here we prove that, given a Laplacian matrix, it is possible to perturb the weights of the existing edges in the underlying graph in order to obtain simple eigenvalues and a Fiedler vector composed of only non-zero entries. These structural genericity properties with the constraint of not adding edges in the underlying graph are stronger than the classical ones, for which arbitrary structural perturbations are allowed. These results open the opportunity to understand the impact of structural changes on the dynamics of complex systems.
It has been suggested that the distribution of the suitably normalized number of zeros of Laplacian eigenfunctions contains information about the geometry of the underlying domain. We study this distribution (more precisely, the distribution of the n odal surplus) for Laplacian eigenfunctions of a metric graph. The existence of the distribution is established, along with its symmetry. One consequence of the symmetry is that the graphs first Betti number can be recovered as twice the average nodal surplus of its eigenfunctions. Furthermore, for graphs with disjoint cycles it is proven that the distribution has a universal form --- it is binomial over the allowed range of values of the surplus. To prove the latter result, we introduce the notion of a local nodal surplus and study its symmetry and dependence properties, establishing that the local nodal surpluses of disjoint cycles behave like independent Bernoulli variables.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا