ﻻ يوجد ملخص باللغة العربية
The energy levels of a quantum graph with time reversal symmetry and unidirectional classical dynamics are doubly degenerate and obey the spectral statistics of the Gaussian Unitary Ensemble. These degeneracies, however, are lifted when the unidirectionality is broken in one of the graphs vertices by a singular perturbation. Based on a Random Matrix model we derive an analytic expression for the nearest neighbour distribution between energy levels of such systems. As we demonstrate the result agrees excellently with the actual statistics for graphs with a uniform distribution of eigenfunctions. Yet, it exhibits quite substantial deviations for classes of graphs which show strong scarring.
It has been suggested that the distribution of the suitably normalized number of zeros of Laplacian eigenfunctions contains information about the geometry of the underlying domain. We study this distribution (more precisely, the distribution of the n
We introduce a new model for investigating spectral properties of quantum graphs, a quantum circulant graph. Circulant graphs are the Cayley graphs of cyclic groups. Quantum circulant graphs with standard vertex conditions maintain important features
Inspired by the classical spectral analysis of birth-death chains using orthogonal polynomials, we study an analogous set of constructions in the context of open quantum dynamics and related walks. In such setting, block tridiagonal matrices and matr
We give an estimate of the quantum variance for $d$-regular graphs quantised with boundary scattering matrices that prohibit back-scattering. For families of graphs that are expanders, with few short cycles, our estimate leads to quantum ergodicity f
We use quantum graphs as a model to study various mathematical aspects of the vacuum energy, such as convergence of periodic path expansions, consistency among different methods (trace formulae versus method of images) and the possible connection wit