ترغب بنشر مسار تعليمي؟ اضغط هنا

Spectra of Laplacian matrices of weighted graphs: structural genericity properties

75   0   0.0 ( 0 )
 نشر من قبل Tiago Pereira
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

This article deals with the spectra of Laplacians of weighted graphs. In this context, two objects are of fundamental importance for the dynamics of complex networks: the second eigenvalue of such a spectrum (called algebraic connectivity) and its associated eigenvector, the so-called Fiedler vector. Here we prove that, given a Laplacian matrix, it is possible to perturb the weights of the existing edges in the underlying graph in order to obtain simple eigenvalues and a Fiedler vector composed of only non-zero entries. These structural genericity properties with the constraint of not adding edges in the underlying graph are stronger than the classical ones, for which arbitrary structural perturbations are allowed. These results open the opportunity to understand the impact of structural changes on the dynamics of complex systems.



قيم البحث

اقرأ أيضاً

We study Riesz means of eigenvalues of the Heisenberg Laplacian with Dirichlet boundary conditions on a cylinder in dimension three. We obtain an inequality with a sharp leading term and an additional lower order term.
We provide a purely variational proof of the existence of eigenvalues below the bottom of the essential spectrum for the Schrodinger operator with an attractive $delta$-potential supported by a star graph, i.e. by a finite union of rays emanating fro m the same point. In contrast to the previous works, the construction is valid without any additional assumption on the number or the relative position of the rays. The approach is used to obtain an upper bound for the lowest eigenvalue.
Reflectionless CMV matrices are studied using scattering theory. By changing a single Verblunsky coefficient a full-line CMV matrix can be decoupled and written as the sum of two half-line operators. Explicit formulas for the scattering matrix associ ated to the coupled and decoupled operators are derived. In particular, it is shown that a CMV matrix is reflectionless iff the scattering matrix is off-diagonal which in turn provides a short proof of an important result of [Breuer-Ryckman-Simon]. These developments parallel those recently obtained for Jacobi matrices.
We establish absolute continuity of the spectrum of a periodic Schrodiner operator in R^n with periodic perforations. We also prove analytic dependece of the dispersion relation on the shape of the perforation.
Spectral properties of Hermitian Toeplitz, Hankel, and Toeplitz-plus-Hankel random matrices with independent identically distributed entries are investigated. Combining numerical and analytic arguments it is demonstrated that spectral statistics of a ll these random matrices is of intermediate type, characterized by (i) level repulsion at small distances, (ii) an exponential decrease of the nearest-neighbor distributions at large distances, (iii) a non-trivial value of the spectral compressibility, and (iv) the existence of non-trivial fractal dimensions of eigenvectors in Fourier space. Our findings show that intermediate-type statistics is more ubiquitous and universal than was considered so far and open a new direction in random matrix theory.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا