ﻻ يوجد ملخص باللغة العربية
Simultaneous translation, which translates sentences before they are finished, is useful in many scenarios but is notoriously difficult due to word-order differences. While the conventional seq-to-seq framework is only suitable for full-sentence translation, we propose a novel prefix-to-prefix framework for simultaneous translation that implicitly learns to anticipate in a single translation model. Within this framework, we present a very simple yet surprisingly effective wait-k policy trained to generate the target sentence concurrently with the source sentence, but always k words behind. Experiments show our strategy achieves low latency and reasonable quality (compared to full-sentence translation) on 4 directions: zh<->en and de<->en.
Text-to-speech synthesis (TTS) has witnessed rapid progress in recent years, where neural methods became capable of producing audios with high naturalness. However, these efforts still suffer from two types of latencies: (a) the {em computational lat
Simultaneous speech-to-speech translation is widely useful but extremely challenging, since it needs to generate target-language speech concurrently with the source-language speech, with only a few seconds delay. In addition, it needs to continuously
Huffman coding finds an optimal prefix code for a given probability mass function. Consider situations in which one wishes to find an optimal code with the restriction that all codewords have lengths that lie in a user-specified set of lengths (or, e
Weakened random oracle models (WROMs) are variants of the random oracle model (ROM). The WROMs have the random oracle and the additional oracle which breaks some property of a hash function. Analyzing the security of cryptographic schemes in WROMs, w
Simultaneous text translation and end-to-end speech translation have recently made great progress but little work has combined these tasks together. We investigate how to adapt simultaneous text translation methods such as wait-k and monotonic multih